Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Experimental GT-POWER Correlation Techniques and Best Practices Low Frequency Acoustic Modeling of the Exhaust System of a Naturally Aspirated Engine

2017-06-05
2017-01-1793
As regulations become increasingly stringent and customer expectations of vehicle refinement increase, the accurate control and prediction of exhaust system airborne acoustics are a critical factor in creating a vehicle that wins in the marketplace. The goal of this project was to improve the predicative accuracy of the GT-power engine and exhaust model and to update internal best practices for modeling. This paper will explore the details of an exhaust focused correlation project that was performed on a naturally aspirated spark ignition eight-cylinder engine. This paper and SAE paper “Experimental GT-POWER Correlation Techniques and Best Practices Low Frequency Acoustic Modeling of the Intake System of a Turbocharged Engine” share similar abstracts and introductions; however, they were split for readability and to keep the focus on a single a single subsystem.
Technical Paper

Experimental GT-POWER Correlation Techniques and Best Practices Low Frequency Acoustic Modeling of the Intake System of a Turbocharged Engine

2017-06-05
2017-01-1794
As regulations become increasingly stringent and customer expectations of vehicle refinement increase, the accurate control and prediction of induction system airborne acoustics are a critical factor in creating a vehicle that wins in the marketplace. The goal of this project was to improve the predicative accuracy of a 1-D GT-power engine and induction model and to update internal best practices for modeling. The paper will explore the details of an induction focused correlation project that was performed on a spark ignition turbocharged inline four-cylinder engine. This paper and SAE paper “Experimental GT-POWER Correlation Techniques and Best Practices” share similar abstracts and introductions; however, they were split for readability and to keep the focus on a single a single subsystem. This paper compares 1D GT-Power engine air induction system (AIS) sound predictions with chassis dyno experimental measurements during a fixed gear, full-load speed sweep.
Technical Paper

Particulate Emissions from a Direct-Injection Spark-Ignition Engine

2005-04-11
2005-01-0103
Particulate mass (PM) emission rate and size distribution measurements were performed in a direct-injection two-stroke engine under a wide range of conditions using a venturi-type mini-dilution tunnel. Air-assisted and nitrogen-assisted liquid fuel injection were both tested to investigate subtle changes in local equivalence ratio; gaseous propane injection using the same injection system was investigated to isolate the effects of liquid fuel impingement. Under overall lean operating conditions the PM emissions were found to decrease when the air-assisted injection was changed to N2-assisted injection with all other parameters equal. The suggested cause for this behavior was a reduction in the PM formation and oxidation rates due to lower local temperatures. A similar effect (lower particulate matter emissions with a locally richer air-fuel ratio) was observed for a light load condition where the local oxygen concentration was varied by changing the exhaust gas recirculation rate.
Technical Paper

Lubricating Oil Contribution to Direct-Injection Two Stroke Engine Particulate Emissions

2004-09-27
2004-32-0012
Particulate emission measurements were performed on a direct-injection two-stroke engine that employed a lost-oil lubricating system. The particulate emissions were sampled using a partial-flow dilution system. Particulate mass emission rates were measured using a tapered element microbalance (TEOM), and the results were found to compare favorably with gravimetric tests performed simultaneously. The size distribution was measured using a scanning mobility particle sizer (SMPS), and the cumulative mass from the measured size distribution was found to agree well with the values measured by the TEOM. The particulate mass emission were found to be dominated by particulate matter derived from the engine oil. The particulate emissions were found to decrease substantially as the oil flow to the engine was reduced from the baseline case of 1:100 (oil-to-fuel mass ratio).
X