Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Tyre Load Analysis of Hydro-Pneumatic Interconnected Suspension with Zero Warp Suspension Stiffness

2015-04-14
2015-01-0630
The purpose of this paper is to present a concept of Hydro-Pneumatic Interconnected Suspension (HPIS) and investigate the unique property of the zero warp suspension stiffness. Due to the decoupling of warp mode from other modes, the road holding ability of the vehicle is maximized meanwhile the roll stability and ride comfort can be tuned independently and optimally without compromise. Ride comfort can be improved with reduced bounce stiffness and the progressive air spring rate can reduce the requirement of suspension deflection space. The roll stability can also be improved by increased roll stiffness. Vehicle suspension system modelling and modal analysis are carried out and compared with conventional suspension. The frequency response of tyres' dynamic load reveals that the proposed zero-warp-stiffness suspension enables the free articulation of front and rear axles at low frequency.
Technical Paper

Comparison of Powertrain System Configurations for Electric Passenger Vehicles

2015-03-10
2015-01-0052
Electric vehicles (EV) are considered a practical alternative to conventional and hybrid electric passenger vehicles, with higher overall powertrain efficiencies by omitting the internal combustion engine. As a consequence of lower energy density in the battery energy storage as compared to fossil fuels powered vehicles, EVs have limited driving range, leading to a range phobia and limited consumer acceptance. Particularly for larger luxury EVs, electric motors with a single reduction gear typically do not achieve the diverse range of function needs that are present in multi-speed conventional vehicles, most notably acceleration performance and top speed requirements. Subsequently, multi-speed EV powertrains have been suggested for these applications. Through the utilization of multiple gear ratios a more diverse range of functional needs can be realized without increasing the practical size of the electric motor.
Technical Paper

Experimental Comparison of Anti-Roll Bar with Hydraulically Interconnected Suspension in Articulation Mode

2013-04-08
2013-01-0710
A detailed experimental study to quantitatively compare a roll-plane hydraulically interconnected suspension with anti-roll bar in articulation (warp) mode is presented in this paper. Anti-roll bar as part of conventional vehicle suspension system is a standard configuration widely used in road vehicles to provide the essential roll-stiffness to enhance vehicle handling and safety during fast cornering. However the drawback of anti-roll bar is apparent that they limit the wheels' travel on uneven road surface and weaken the wheel/ground holding ability, particularly in articulation mode. Roll-plane Hydraulically Interconnected Suspension (HIS) system, as a potential replacement of anti-roll bar, could effectively increase vehicle roll-stiffness and provide the tunable damping effect, without compromising vehicle's flexibility in articulation mode.
X