Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Journal Article

Development of System Control for Rapid Warm-up Operation of Fuel Cell

2012-04-16
2012-01-1230
Cold weather operation has been a major issue for fuel cell hybrid vehicles (FCHV). To counteract the effects of low temperatures on FCHV operation, an approach for rapid warm-up operation based on concentration overvoltage increase and conversion efficiency decrease by limiting oxygen or hydrogen supply was adopted. In order to suppress increases in exhaust hydrogen concentration due to pumping hydrogen during rapid warm-up, dilution control using bypass air and reduction of concentration overvoltage by a minimum voltage guard were implemented. These approaches effectively control waste heat generation and suppress exhaust hydrogen concentrations during cold start and warm-up. These developments were incorporated into the 2008 Toyota FCHV-adv and it was confirmed that the rapid warm-up operation strategy allowed the FCHV-adv to be successfully and repeatedly started at -30°C.
Journal Article

Development of Electric Power Control using the Capacitance Characteristics of the Fuel Cell

2011-04-12
2011-01-1346
Cold weather operation has been a major issue for fuel cell vehicles (FCV). In order to counteract this effect on FCV operation, an approach for rapid warm-up operation based on : concentration overvoltage increase and conversion efficiency decrease by limiting oxygen or hydrogen supply, was adopted in a running fuel cell hybrid vehicle. In order to adjust the output power response of the fuel cell to the target power of the vehicle, -the inherent capacitance characteristics of the fuel cell were measured- based on the oxidation-reduction reaction and an electric double-layer capacitor, and an equivalent electric circuit model of a fuel cell with the capacitance was constructed. This equivalent electric circuit model was used to develop a power control algorithm to manage absorption of the surplus power, or deviation, to the capacitance.
Technical Paper

Development of Fuel Cell Hybrid Vehicle Rapid Start-up from Sub-freezing Temperatures

2010-04-12
2010-01-1092
The Fuel Cell is a highly efficient device that when integrated with hybrid technology yields even higher system-level efficiencies. This impressive efficiency is one of the key reasons fuel cell technology is one of the most promising future power sources. However, this benefit creates a significant challenge in cold climates. With so much of the energy converted directly to power, there is little waste heat compared to conventional internal combustion engine (ICE) technologies. This challenge is particularly apparent at system start up from ambient sub-freezing temperatures due to the fact that the fuel cell heats-up slower than internal combustion engines (ICEs). Clearly, the amount of heat generation can be increased if the total power produced by the system is increased proportionally, but this method can be challenging because the excess power must be consumed in some manner (such as by a cabin heater).
Technical Paper

Development of Water Content Control System for Fuel Cell Hybrid Vehicles Based on AC Impedance

2010-04-12
2010-01-1088
Toyota has been developing fuel cell hybrid vehicles (FCHV) since 1992 and is currently working to resolve issues that remain for commercialization. This research focused on one of the main issues for fuel cells (FC), namely water content of the electrolyte membrane, to develop a FC water content control system based on AC impedance measurement. Adopting this control system in the FCHV resolved the issue of reduced efficiency caused by FC membrane dry-out, and makes it possible to start up the FCHV in temperatures down to -30°C by performing appropriate water content control for freezing environments.
X