Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Characterization of Occupant Lower Extremity Behavior During Moderate-to-High Speed Rear Impacts

2013-04-08
2013-01-0222
Injury potential to the neck has been studied extensively for rear-end impacts. The capacity for injury to other body regions, such as the lower extremities, has not been previously explored. The objective of the current study was to characterize the forces and motions experienced in the lower extremities during moderate-to-high speed rear-end impacts. The current study utilized publicly available rear-end crash tests. Forty-two 50 km/hour, 20% offset, 180° barrier rear-end impacts were used. The occupant lower extremity behavior was analyzed for 63 ATDs, and included 42 driver's seats, 8 front passenger seats, and 13 right-rear seat scenarios. Three consistent events were identified during each test, in the following sequence; 1. initial compressive femur force, 2. secondary tensile femur force, and 3. rearward pelvis acceleration peak.
Journal Article

Normal Pedal Activation in Real World Situations

2011-04-12
2011-01-0551
This study reports pedal activation forces and typical acceleration and deceleration rates during everyday driving activities. Twenty subjects of varying ages, height and weight participated in the study. Each subject was asked to drive a four-door sedan along 2.3 miles of roadway in DuPage County, Illinois. Vehicle speed, acceleration, and position were measured using a global positioning system that was synchronized with force data collected from load cells rigidly mounted on the vehicle's accelerator and brake pedals. Pedal forces and vehicle behavior were measured during common driving tasks such as, shifting the transmission into reverse, backing out of a parking spot, and, making a right hand turn from a stop sign. Our data suggests that simple vehicle dynamic tasks produced in experimental settings may not reliably reproduce vehicle and occupant behavior.
Technical Paper

Compressive Neck Preloading During the Airborne Phase of Vehicle Rollover

2007-04-16
2007-01-0377
Vehicle occupants undergo upward and outward excursion during the airborne phase of vehicle rollover due to the inertial effects coming from the vehicle's rotation. When this excursion is sufficient to permit contact between the occupant's head and the vehicle's interior roof panel, the neck may experience compressive loading. This compressive loading, generated during the airborne phase and prior to vehicle-to-ground impact, could render the occupant more susceptible to compressive neck injury during subsequent vehicle-to-ground impacts. In the present study, computational simulations were used to evaluate the effect of steady-state roll rate on compressive preloading in the cervical spine. The results show an increasing relationship between roll rate and compressive preloading when the head contacts the roof panel and becomes constrained.
X