Refine Your Search

Topic

Search Results

Author:
Viewing 1 to 20 of 20
Technical Paper

Multi-Level Modeling of Real Syngas Combustion in a Spark Ignition Engine and Experimental Validation

2019-09-09
2019-24-0012
Syngas produced from biomass gasification is being increasingly considered as a promising alternative to traditional fuels in Spark-Ignition (SI) Internal Combustion Engines (ICEs). Due to the low energy density and extreme variability in the composition of this gaseous fuel, numerical modeling can give an important contribution to assure stable engine performances. The present work intends to give a contribution in this sense in this sense, by proposing a multi-level set of approaches, characterized by an increasing detail, as a tool aimed at the optimization of energy conversion of non-conventional fuels. At first, a specific characterization of the dependency of the syngas laminar flame speed upon its composition is achieved through an iterative approach pursued in the ANSYS ChemkinTM environment, where validated correlations of the flame speed tuning parameters are obtained in a zero-dimensional framework.
Journal Article

A 3D CFD Simulation of GDI Sprays Accounting for Heat Transfer Effects on Wallfilm Formation

2017-09-04
2017-24-0041
During gasoline direct injection (GDI) in spark ignition engines, droplets may hit piston or liner surfaces and be rebounded or deposit in the liquid phase as wallfilm. This may determine slower secondary atomization and local enrichments of the mixture, hence be the reason of increased unburned hydrocarbons and particulate matter emissions at the exhaust. Complex phenomena indeed characterize the in-cylinder turbulent multi-phase system, where heat transfer involves the gaseous mixture (made of air and gasoline vapor), the liquid phase (droplets not yet evaporated and wallfilm) and the solid walls. A reliable 3D CFD modelling of the in-cylinder processes, therefore, necessarily requires also the correct simulation of the cooling effect due to the subtraction of the latent heat of vaporization of gasoline needed for secondary evaporation in the zone where droplets hit the wall. The related conductive heat transfer within the solid is to be taken into account.
Technical Paper

Development of a Reduced Chemical Mechanism for Combustion of Gasoline-Biofuels

2017-09-04
2017-24-0039
Bio-derived fuels are drawing more and more attention in the internal combustion engine (ICE) research field in recent years. Those interests in use of renewable biofuels in ICE applications derive from energy security issues and, more importantly, from environment pollutant emissions concerns. High fidelity numerical study of engine combustion requires advanced computational fluid dynamics (CFD) to be coupled with detailed chemical kinetic models. This task becomes extremely challenging if real fuels are taken into account, as they include a mixture of hundreds of different hydrocarbons, which prohibitively increases computational cost. Therefore, along with employing surrogate fuel models, reduction of detailed kinetic models for multidimensional engine applications is preferred. In the present work, a reduced mechanism was developed for primary reference fuel (PRF) using the directed relation graph (DRG) approach. The mechanism was generated from an existing detailed mechanism.
Technical Paper

Transient Heat Transfer Effects on a Gasoline Spray Impact against Hot Surfaces: Experimental and Numerical Study

2017-09-04
2017-24-0107
Gasoline direct injection (GDI) engines are characterized by complex phenomena involving spray dynamics and possible spray-wall interaction. Control of mixture formation is indeed fundamental to achieve the desired equivalence ratio of the mixture, especially at the spark plug location at the time of ignition. Droplet impact on the piston or liner surfaces has also to be considered, as this may lead to gasoline accumulation in the liquid form as wallfilm. Wallfilms more slowly evaporate than free droplets, thus leading to local enrichment of the charge, hence to a route to diffusive flames, increased unburned hydrocarbons formation and particulate matter emissions at the exhaust. Local heat transfer at the wall obviously changes if a wallfilm is present, and the subtraction of the latent heat of vaporization necessary for secondary phase change is also an issue deserving a special attention.
Technical Paper

An Experimental and Numerical Investigation of GDI Spray Impact over Walls at Different Temperatures

2016-04-05
2016-01-0853
Internal combustion engines performance greatly depends on the air-fuel mixture formation and combustion processes. In gasoline direct injection (GDI) engines, in particular, the impact of the liquid spray on the piston or cylinder walls is a key factor, especially if mixture formation occurs under the so-called wall-guided mode. Impact causes droplets rebound and/or deposition of a liquid film (wallfilm). After being rebounded, droplets undergo what is called secondary atomization. The wallfilm may remain of no negligible size, so that fuel vapor rich zones form around it leading to so-called pool-flames (flames placed in the piston pit), hence to unburned hydrocarbons (HC) and particulate matter (PM) formation. A basic study of the spray-wall interaction is here performed by directing a multi-hole GDI spray against a real shape engine piston, possibly heated, under standard air conditions.
Technical Paper

Image Processing for Early Flame Characterization and Initialization of Flamelet Models of Combustion in a GDI Engine

2015-09-06
2015-24-2405
Ignition and flame inception are well recognised as affecting performance and stable operation of spark ignition engines. The very early stage of combustion is indeed the main source of cycle-to-cycle variability, in particular in gasoline direct injection (GDI) engines, where mixture formation may lead to non-homogenous air-to-fuel distributions, especially under some speed and load conditions. From a numerical perspective, 3D modelling of combustion within Reynolds Averaged Navier Stokes (RANS) approaches is not sufficient to provide reliable information about cyclic variability, unless proper changes in the initial conditions of the flow transport equations are considered. Combustion models based on the flamelet concept prove being particularly suitable for the simulation of the energy conversion process in internal combustion engines, due to their low computational cost. These models include a transport equation for the flame surface density, which needs proper initialization.
Technical Paper

Experimental and Numerical Investigation of the Effect of Split Injections on the Performance of a GDI Engine Under Lean Operation

2015-09-06
2015-24-2413
Gasoline direct injection (GDI) allows flexible operation of spark ignition engines for reduced fuel consumption and low pollutants emissions. The choice of the best combination of the different parameters that affect the energy conversion process and the environmental impact of a given engine may either resort to experimental characterizations or to computational fluid dynamics (CFD). Under this perspective, present work is aimed at discussing the assessment of a CFD-optimization (CFD-O) procedure for the highest performance of a GDI engine operated lean under both single and double injection strategies realized during compression. An experimental characterization of a 4-stroke 4-cylinder optically accessible engine, working stratified lean under single injection, is first carried out to collect a set of data necessary for the validation of a properly developed 3D engine model.
Technical Paper

Split Injection in a GDI Engine Under Knock Conditions: An Experimental and Numerical Investigation

2015-09-06
2015-24-2432
Present work investigates both experimentally and numerically the benefits deriving from the use of split injections in increasing the engine power output and reducing the tendency to knock of a gasoline direct injection (GDI) engine. The here considered system is characterized by an optical access to the combustion chamber. Imaging in the UV-visible range is carried out by means of a high spatial and temporal resolution camera through an endoscopic system and a transparent window placed in the piston head. This last is modified to allow the view of the whole combustion chamber almost until the cylinder walls, to include the so-called eng-gas zones of the mixture, where undesired self-ignition may occur under some circumstances. Optical data are correlated to in-cylinder pressure oscillations on a cycle resolved basis.
Journal Article

Experimental and Numerical Investigation in a Turbocharged GDI Engine Under Knock Condition by Means of Conventional and Non-Conventional Methods

2015-04-14
2015-01-0397
The present paper deals with a comprehensive analysis of the knocking phenomenon through experiments and numerical simulations. Conventional and non-conventional measurements are performed on a 4-stroke, 4-cylinder, turbocharged GDI engine. The engine exhibits optical accesses to the combustion chamber. Imaging in the UV-visible range is carried out by means of a high spatial and temporal resolution camera through an endoscopic system and a transparent window in the piston head. This last is modified to allow the view of the whole combustion chamber almost until the cylinder walls, to include the so-called eng-gas zones. Optical data are correlated to in-cylinder pressure-based indicated analyses in a cycle resolved approach.
Technical Paper

GDI Spray-Wall Interaction with Numerical Characterization: Wall Temperature Influence

2015-04-14
2015-01-0917
The work analyses, from both an experimental and a numerical point of view, the impingement of a spray generated from a GDI injector on a hot solid wall. The temperature of the surface is identified as an important parameter affecting the outcome after impact. A gasoline spray issuing from a customized single-hole injector is characterized in a quiescent optically-accessible vessel as it impacts on an aluminum plate placed at 22.5 mm from the injector tip. Optical investigations are carried out at atmospheric back-pressure by a direct schlieren optical set-up using a LED as light source. A synchronized C-Mos high-speed camera captures cycle-resolved images of the evolving impact. The spatial and temporal evolution of the liquid and vapor phases are derived. They serve to define a data base to be used for the validation of a properly formulated 3D CFD model suitable to describe the impact of the fuel on the piston head in a real engine.
Technical Paper

Simultaneous Shadowgraph/Mie Scattering Imaging of Liquid and Vapor Phases of Diesel Sprays and Validation of a Numerical Model

2014-10-13
2014-01-2744
Diesel sprays from an axially-disposed single-hole injector are studied under both non-vaporizing and vaporizing conditions in a constant-volume vessel. A hybrid shadowgraph/Mie-scattering imaging set-up is used to acquire the liquid and vapor phases of the fuel distribution in a near-simultaneous visualization mode by a high-speed camera (40,000 fps). A diesel injector with k0 factor is used, having the exit-hole diameter of 0.1 mm and the ratio L/d =10. The studies are performed at the injection pressures of 70, 120, and 180 MPa, 25.37 kg/m3 ambient gas density, at the environment temperature of 373, 453 and 900 K. The instantaneous tip penetration of the liquid and vapor phases is extracted from the collected images and processed by a properly assessed software, under the various operating conditions. The AVL FIRE™ code is also used to simulate the spray dynamics. The model is validated on the ground of the collected experimental data.
Technical Paper

Reducing Fuel Consumption, Noxious Emissions and Radiated Noise by Selection of the Optimal Control Strategy of a Diesel Engine

2011-09-11
2011-24-0019
Despite the recent efforts devoted to develop alternative technologies, it is likely that the internal combustion engine will remain the dominant propulsion system for the next 30 years and beyond. Also as a consequence of more and more stringent emissions regulations established in the main industrialized countries, strongly demanded are methods and technologies able to enhance the internal combustion engines performance in terms of both efficiency and environmental impact. Present work focuses on the development of a numerical method for the optimization of the control strategy of a diesel engine equipped with a high pressure injection system, a variable geometry turbocharger and an EGR circuit. A preliminary experimental analysis is presented to characterize the considered six-cylinder engine under various speeds, loads and EGR ratios.
Technical Paper

Multiple Injection in a Mixed Mode GDI Boosted Engine

2010-05-05
2010-01-1496
A numerical investigation is performed with the aim of understanding the potential benefits of multiple injections in the mixed mode boosting operation of a Gasoline Direct Injection (GDI) engine. The study is carried out by firstly characterizing a high pressure multi-hole injector from the experimental point of view in the split injection operation. Measurements of the fuel injection rate are made through an AVL Meter operating on the Bosch principle. The injector is tested using gasoline in a double pulse strategy. The injection pressure is varied between 5.0 and 25.0 MPa with the pulse durations calibrated for delivering a total mass up to 50 mg/str. The choice of the dwell time between two successive injection events is achieved by firstly defining the minimum time compatible with the mechanical characteristics of both the injector and the injector driver.
Technical Paper

Numerical Study of a GDI Engine Operating in the Jet Guided Combustion Mode

2009-09-13
2009-24-0021
The work relates to the use of multidimensional modelling as a tool for improving the robustness of combustion of a Gasoline Direct Injection (GDI) Spark Ignition (SI) engine. A procedure is assessed for the prediction of the thermo-fluid-dynamic processes occurring in a single-cylinder, four-stroke engine, characterised by a bore-to-stroke ratio close to the unity, and a pent-roof head with four valves. The engine is at a design stage, under development for application on two wheels vehicles. A new generation six-holes Bosch injector is considered as realising a jet guided combustion mode. This last is preferred for its potential in realising effective charge stratification and great combustion stability under various operating conditions. The three-dimensional (3D) numerical model is developed within the AVL FIRE™ software environment.
Technical Paper

Prediction and Optimization of the Performances, Noxious Emissions and Radiated Noise of a Light Duty Common-Rail Diesel Engine

2009-09-13
2009-24-0011
The paper illustrates the interdisciplinary matching of different numerical and experimental techniques, aimed to characterize the performances, emissions and combustion noise radiated from a small-size DI diesel engine. The main objective is the development of proper models to be included within an optimization procedure, able to define an optimal injection strategy for a common-rail engine. The injection strategy is selected to simultaneously reduce the fuel consumption, the pollutant emissions and the combustion noise. The engine considered is a naturally aspirated, four strokes, two valves, single-cylinder engine (505 cm3 displacement), to be equipped with a prototype common-rail fuel injection system. A preliminary experimental investigation is carried out on the above engine, equipped, however, with a standard mechanical injection system (base engine).
Technical Paper

Assessment of a Numerical Model for Multi-Hole Gasoline Sprays to be Employed in the Simulation of Spark Ignition GDI Engines with a Jet-Guided Combustion Mode

2009-06-15
2009-01-1915
Results of an experimental campaign conducted on a multi-hole gasoline injector are used to assess a numerical model for the spray dynamics suitable to be employed for the prediction of a GDI engine pressure cycle. The considered injector generates a spray with a hollow-ellipsoid footprint structure on a plane perpendicular to the spray axis. Spray penetration lengths and cone angles are measured at different injection pressures and total injected masses in an optically accessible vessel containing nitrogen at controlled conditions of temperature and pressure. Injected mass flow rate is measured on a Bosch tube. The numerical simulation is performed within the AVL Fire™ code environment. As a first step, the gasoline is considered as entering a constant volume environment containing nitrogen, in order to reproduce the effected experiments. Measured injection flow rates and cone angles are used as input variables for the model.
Technical Paper

Assessment of a Detailed Kinetic Diesel Combustion Model by In-Cylinder Optical Measurements

2006-04-03
2006-01-0057
The main objective of the present paper is the application of a detailed kinetic model to study diesel combustion in an optical accessible engine equipped with a common rail injection system. Three different injection schedules made of one to three consecutive injections are considered from both the numerical and the experimental point of view. The numerical model is assessed in such a way to assure its portability with respect to changing injection strategies. The employed detailed kinetic mechanism consists of 305 reactions involving 70 species and is included in the KIVA-3V code. The considered fuel has the liquid phase properties of the diesel oil, the vapor phase properties of C14H28. It is subsequently decomposed into n-heptane and toluene. The chemical solver is based on the use of the reference species technique and on the Partially Stirred Reactor (PaSR) hypothesis. These allow maintaining the computational cost within acceptable limits.
Technical Paper

Numerical and Experimental Analysis of Multiple Injection Diesel Sprays

2004-06-08
2004-01-1879
A customised version of FIRE™ code is chosen to simulate the spray injected into a controlled environment by means of a Common Rail system driven via a Programmable Electronic Control Unit. Numerical results are compared to experimental data collected under various operating conditions, namely varying the injection pressure up to 120 MPa, and the gas back-pressure between 0.1 and 5.0 MPa. Non-evaporating conditions are considered. The employed optically accessible test chamber allows to light the spray with a flash lamp or a pulsed laser sheet, generated on the second harmonic of a Nd-YAG laser (532 nm, 12 ns in duration). Images are collected at different instants of time after the start of injection by means of a CCD camera. A digital image processing software is used to evaluate the major characteristics of the spray, as the penetration length and the cone angle. The injection flow rate is properly measured on a rate-of-injection flow bench for different injection strategies.
Technical Paper

Multidimensional Modelling and Spectroscopic Analysis of the Soot Formation Process in a Diesel Engine

2002-07-09
2002-01-2161
Multidimensional simulation of the soot formation process in a diesel engine is realised exploiting quantitative measurements of the soot volume fraction and diameter obtained by optical techniques. Broadband extinction and scattering measurements are performed on an optically accessible 4-stroke engine where a forced air motion allows a strong prevalence of the premixed stage of combustion with respect to the non-premixed one. Two semi-empirical models for soot formation are tested in the numerical simulation, which is performed using a customized version of the KIVA-3 code. The need of furnishing coherent values of the soot particles density and mean diameter to the one of the two models requiring this kind of information, is highlighted and demonstrated to be crucial in avoiding over-prediction of the soot concentration.
Technical Paper

The Role of Radical Species in Diesel Engine Auto-Ignition Detection

2001-03-05
2001-01-1003
Ignition delay in diesel engine combustion comprehends both a chemical and a physical amount, the first depending on fuel composition and charge temperature and pressure, the last resulting of time needed for the fuel to atomize, vaporize and mix with air. Control of this parameter, which is mandatory to weight the relative amount of premixed to diffusive stage of the hydrocarbon combustion, is here considered. Experimental measurements of flame intensity spectra obtained by in situ measurements on an optically accessible test device show the presence of peaks corresponding to radicals as OH and CH appearing at the pressure start of combustion. Since OH radicals result from chain branching reactions, a numerical simulation is performed based on a reduced kinetic scheme which allows to measure the branching agent concentration, and whose approximate nature is adequate to the proportion chemical aspects contribute to the overall delay.
X