Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Heat Release Rate Modeling Improvement in an Eulerian 1D Diesel Combustion Model

2018-04-03
2018-01-1127
Diesel engines are being more commonly used for light automotive applications, due to their higher efficiency. However, pollutant emissions can be higher than their gasoline counterparts, being difficult to reduce and control because reducing one pollutant increases another. One way to reduce emissions is by using multiple injection strategies. However, understanding multiple injections is no easy task, so far done by trial and error and experience. Therefore, a numerical 1D model is to be adapted to simulate multiple injection situations in a diesel engine. In a previous paper by the authors, an existing model was adapted with a thermal dilatation model to consider both radial and axial dilatations in the diesel spray. The base model used is that of Ma et al (based on the Eulerian model of Musculus and Kattke for inert diesel jets).
Technical Paper

Comparison of Eulerian and Lagrangian 1D Models of Diesel Fuel Injection and Combustion

2017-09-04
2017-24-0006
Diesel engines are being more commonly used for light automotive applications, due to their higher efficiency, despite the difficulty of depollution and extra associated costs. They require more accessories to function properly, such as turbocharging and post-treatment systems. The most important pollutants emitted from diesel engines are NOx and particles (in conventional engines), being difficult to reduce and control because reducing one increases the other. Low temperature combustion (LTC) diesel engines are able to reduce both pollutants, but increase emissions of CO and HC. Besides HCCI and EGR systems, one method that could achieve LTC conditions is by using multiple injections (pilot/main, split injection, etc.). However, understanding multiple diesel injection is no easy task, so far done by trial and error and complex 3D CFD models, or too simplified by 0D models. Therefore, a numerical 1D model is to be adapted to simulate multiple injection situations in a diesel engine.
X