Refine Your Search

Topic

Search Results

Technical Paper

3D CFD Analysis of the Influence of Some Geometrical Engine Parameters on Small PFI Engine Performances - The Effects on Tumble Motion and Mean Turbulent Intensity Distribution

2012-10-23
2012-32-0096
In scooter/motorbike engines coherent and stable tumble motion generation is still considered an effective mean in order to both reduce engine emissions and promote higher levels of combustion efficiency. The scientific research also assessed that squish motion is an effective mean for speeding up the combustion in a combustion process already fast. In a previous technical paper the authors demonstrated that for an engine having a high C/D ratio the squish motion is not only not necessary but also detrimental for the stability of the tumble motion itself, because there is a strong interaction between these two motions with the consequent formation of secondary vortices, which in turn penalizes the tumble breakdown and the turbulent kinetic energy production.
Technical Paper

A Chemical-Kinetic Approach to the Definition of the Laminar Flame Speed for the Simulation of the Combustion of Spark-Ignition Engines

2017-09-04
2017-24-0035
The laminar burning speed is an important intrinsic property of an air-fuel mixture determining key combustion characteristics such as turbulent flame propagation. It is a function of the mixture composition (mixture fraction and residual gas mass fraction) and of the thermodynamic conditions. Experimental measurements of Laminar Flame Speeds (LFS) are common in literature, but initial pressure and temperature are limited to low values due to the test conditions: typical pressure values for LFS detection are lower than 25 bar, and temperature rarely exceeds 550 K. Actual trends in spark ignition engines are to increase specific power output by downsizing and supercharging, thus the flame front involves even more higher pressure and temperature since the beginning of combustion.
Technical Paper

A Numerical and Experimental Study Towards Possible Improvements of Common Rail Injectors

2002-03-04
2002-01-0500
The aim of this work is to propose modifications to the managing of the 1st generation Common Rail injectors in order to reduce actuation time towards multiple injection strategies. The current Common Rail injector driven by 1st ECU generation is capable of operating under stable conditions with a minimum dwell between two consecutive injections of 1.8 ms. This limits the possibility in using proper and efficient injection strategies for emission control purposes. A previous numerical study, performed by the electro-fluid-mechanical model built up by Matlab-Simulink environment, highlighted different area where injector may be improved with particular emphasis on electronic driving circuit and components design. Experiments carried out at injector Bosch test-bench showed that a proper control of the solenoid valve allowed reducing drastically the standard deviation during the pilot pulses.
Technical Paper

A RANS CFD 3D Methodology for the Evaluation of the Effects of Cycle By Cycle Variation on Knock Tendency of a High Performance Spark Ignition Engine

2014-04-01
2014-01-1223
Knocking combustions heavily limits the efficiency of Spark Ignition engines. The compression ratio is limited in the design stage of the engine development, letting to Spark Advance control the task of reducing the odds of abnormal combustions. A detailed analysis of knocking events can help improving engine performance and diagnosis strategies. An effective way is to use advanced 3D CFD (Computational Fluid Dynamics) simulation for the analysis and prediction of combustion performance. Standard 3D CFD approach is based on RANS (Reynolds Averaged Navier Stokes) equations and allows the analysis of the mean engine cycle. However knocking phenomenon is not deterministic and it is heavily affected by the cycle to cycle variation of engine combustions. A methodology for the evaluation of the effects of CCV (Cycle by Cycle Variability) on knocking combustions is here presented, based on both the use of Computation Fluid Dynamics (CFD) tools and experimental information.
Journal Article

Advanced Combustion Modelling of High BMEP Engines under Water Injection Conditions with Chemical Correlations Generated with Detailed Kinetics and Machine Learning Algorithms

2020-09-15
2020-01-2008
Water injection is becoming a technology of increasing interest for SI engines development to comply with current and prospective regulations. To perform a rapid optimization of the main parameters involved by the water injection process, it is necessary to have reliable CFD methodologies capable of capturing the most important phenomena. In the present work, a methodology for the CFD simulation of combustion cycles of SI GDI turbocharged engines under water injection operation is proposed. The ECFM-3Z model adopted for combustion and knock simulations takes advantages by the adoption of correlations for the laminar flame speed, flame thickness and ignition delay times prediction obtained by a detailed chemistry calculation. The latter uses machine learning algorithms to reduce the time to generate the full database while still maintaining an even distribution along the variables of interest.
Technical Paper

Advanced Modeling of Common Rail Injector Dynamics and Comparison with Experiments

2003-03-03
2003-01-0006
The aim of this work is to set up a methodology for simulating Common Rail high-pressure injectors based on coupling a lump-model with CFD two-phase multi-dimensional computations. The unit simulated is the Bosch injector. The injector lump-model resulted in the definition of the three sub-models for hydraulics, mechanics and electro-magnetics. The second-order differential governing equations have been solved in Matlab/Simulink environment and are properly coupled together with the one-dimensional partial differential equations that describe the unsteady pipe flow. A detailed library of thermo-mechanical properties for ISO-4113 oil and diesel fuel is included. Cavitation effects on discharge coefficient in the main orifices were accounted for by using results from CFD steady two-phase flow simulations. The evaluation of the model capability was assessed by using detailed experiments carried out at different practical injector operating conditions.
Technical Paper

Advanced Modelling of a New Diesel Fast Solenoid Injector and Comparison with Experiments

2004-03-08
2004-01-0019
Upcoming Euro 4 and Euro 5 emission standards are increasing efforts on injection system developments in order to improve mixture quality and combustion efficiency. The target features of advanced injection systems are related to their capability of operating multiple injection with a precise control of the amount of injected fuel, low cycle-by-cycle variability and life drift, within flexible strategies. In order to accomplish this task, injector performance must be optimised by acting on: optimisation of electronic, driving circuit, detailed investigation of different nozzle hole diameter configurations, assessment of the influence of manufacturing errors on hole diameter and inlet rounding on injector performance. The paper will focus on the use of an integrated lump-1D/3D methodology for the design of advanced new fast solenoid Common Rail (C.R.) injector for high speed diesel engines. A lump-model built up in AMESim® environment was used to address the injector design.
Technical Paper

Analysis of the Mixture Formation at Partial Load Operating Condition: The Effect of the Throttle Valve Rotational Direction

2015-09-06
2015-24-2410
In the next incoming future the necessity of reducing the raw emissions leads to the challenge of an increment of the thermal engine efficiency. In particular it is necessary to increase the engine efficiency not only at full load but also at partial load conditions. In the open literature very few technical papers are available on the partial load conditions analysis. In the present paper the analysis of the effect of the throttle valve rotational direction on the mixture formation is analyzed. The engine was a PFI 4-valves motorcycle engine. The throttle valve opening angle was 17.2°, which lays between the very partial load and the partial load condition. The CFD code adopted for the analysis was the FIRE AVL code v. 2013.2. The exhaust, intake and compression phases till TDC were simulated: inlet/outlet boundary conditions from 1D simulations were imposed.
Technical Paper

Application of a One-Dimensional Dilution and Evaporation Lubricant Oil Model to Predict Oil Evaporation under Different Engine Operative Conditions Considering a Large Hydrogen-Fuelled Engine

2023-08-28
2023-24-0009
The increasing environmental concern is leading to the need for innovation in the field of internal combustion engines, in order to reduce the carbon footprint. In this context, hydrogen is a possible mid-term solution to be used both in conventional-like internal combustion engines and in fuel cells (for hybridization purposes), thus, hydrogen combustion characteristics must be considered. In particular, the flame of a hydrogen combustion is less subjected to the quenching effect caused by the engine walls in the combustion chamber. Thus, the significant heating up of the thin lubricant layer upon the cylinder liner may lead to its evaporation, possibly and negatively affecting the combustion process, soot production. The authors propose an analysis which aims to address the behavior of different typical engine oils, (SAE0W30, SAE5W30, SAE5W40) under engine thermo-physical conditions considering a large hydrogen-fuelled engine.
Journal Article

Assessment of Advanced SGS Models for LES Analysis of ICE Wall-Bounded Flows - Part I: Basic Test Case

2016-03-14
2016-01-9041
Large Eddy Simulation (LES) represents nowadays one of the most promising techniques for the evaluation of the dynamics and evolution of turbulent structures characterizing internal combustion engines (ICE). In the present paper, subdivided into two parts, the capabilities of the open-source CFD code OpenFOAM® v2.3.0 are assessed in order to evaluate its suitability for engine cold flow LES analyses. Firstly, the code dissipative attitude is evaluated through an inviscid vortex convection test to ensure that the levels of numerical dissipation are compatible with LES needs. Quality and completeness estimators for LES simulations are then proposed. In particular the Pope M parameter is used as a LES completeness indicator while the LSR parameter provides useful insights far calibrating the grid density. Other parameters such as the two-grid LESIQk index are also discussed.
Technical Paper

Assessment of the Influence of Intake Duct Geometrical Parameters on the Tumble Motion Generation in a Small Gasoline Engine

2012-10-23
2012-32-0095
During the last years the deep re-examination of the engine design for lowering engine emissions involved two-wheel vehicles too. The IC engine overall efficiency plays a fundamental role in determining final raw emissions. From this point of view, the optimization of the in-cylinder flow organization is mandatory. In detail, in SI engines the generation of a coherent tumble vortex having dimensions comparable to the engine stroke could be of primary importance to extend the engines' ignition limits toward the field of the dilute/lean mixtures. For motorbike and motor scooter applications, the optimization of the tumble generation is considered an effective way to improve the combustion system efficiency and to lower emissions, considering also that the two-wheels layout represents an obstacle in adopting the advanced post-treatment concepts designed for automotive applications.
Technical Paper

Comparison of Modern Powertrains Using an Energy Model Based on Well-to-Miles Analysis

2023-08-28
2023-24-0005
The need to reduce carbon dioxide emissions from motor vehicles pushes the European Union towards drastic choices on future mobility. Despite this, the engines of the “future” have not yet been defined: the choice of engine type will undoubtedly depend on the type of application (journey length, availability of recharging/refueling facilities), practical availability of alternative fuels, and electricity to recharge the batteries. The electrification of vehicles (passenger and transportation cars) may be unsuitable for several aspects: the gravimetric energy density could be too low if the vehicle has to be lightweight, must achieve a high degree of autonomy, or needs a very short refueling time.
Journal Article

Coupling Between 1D-3D Simulation Results to Predict Cavitation in Motorcycle Forks

2009-11-02
2009-01-2680
Fork system is a primary component for motorcycles because it assures the contact between tires and road, therefore the safety and the driving feeling. Usually fork optimization and tuning are experimentally made involving the generation of a high large number of prototypes and an expensive experimental campaign. To reduce the design and the tuning phases of a generic damper system, the numerical simulation should be considered. In this paper, a one-dimensional (1D) model of fore-carriage forks for road applications is presented. The model was built-up in AMESim code. In particular, the authors’ attention was focused on the detection and analysis of cavitation phenomenon inside the fork. As well known, the cavitation is a complex three-dimensional (3D) phenomenon that implies the phase transition.
Journal Article

Design of Catalytic Devices by Means of Genetic Algorithm: Comparison Between Open-Cell Foam and Honeycomb Type Substrates

2016-04-05
2016-01-0965
Metallic foams or sponges are materials with a cell structure suitable for many industrial applications, such as reformers, heat catalytic converters, etc. The success of these materials is due to the combination of various characteristics such as mechanical strength, low density, high specific surface, good thermal exchange properties, low flow resistance and sound absorption. Different materials and manufacturing processes produce different type of structure and properties for various applications. In this work a genetic algorithm has been developed and applied to support the design of catalytic devices. In particular, two substrates were considered, namely the traditional honeycomb and an alternative open-cell foam type. CFD simulations of pressure losses and literature based correlations for the heat and mass transfer were used to support the genetic algorithm in finding the best compromise between flow resistance and pollutant abatement.
Technical Paper

Development of a 0D Model Starting from Different RANS CFD Tumble Flow Fields in Order to Predict the Turbulence Evolution at Ignition Timing

2014-11-11
2014-32-0048
Faster combustion and lower cycle-to-cycle variability are mandatory tasks for naturally aspirated engines to reduce emission levels and to increase engine efficiency. The promotion of a stable and coherent tumble structure is considered as one of the best way to promote the in-cylinder turbulence and therefore the combustion velocity. During the compression stroke the tumble vortex is deformed, accelerated and its breakdown in smaller eddies leads to the turbulence enhancement process. The prediction of the final level of turbulence for a particular engine operating point is crucial during the engine design process because it represents a practical comparative means for different engine solutions. The tumble ratio parameter value represents a first step toward the evaluation of the turbulence level at ignition time, but it has an intrinsic limit.
Technical Paper

Development of an Ignition Model for S.I. Engines Simulation

2007-04-16
2007-01-0148
An ignition model based on Lagrangian approach was set-up. A lump model for the electrical circuit of the spark plug is used to compute breakdown and glow energy. At the end of shock wave and very first plasma expansion, a spherical kernel is deposited inside the gas flow at spark plug location. A simple model allows one to compute initial flame kernel radius and temperature based on physical mixture properties and spark plug characteristics. The sphere surface of the kernel is discretized by triangular elements which move radially according to a lagrangian approach. Expansion velocity is computed accounting for both heat conduction effect at the highest temperatures and thermodynamic energy balance at relatively lower temperatures. Turbulence effects and thermodynamic properties of the air-fuel mixture are accounted for. Restrikes are possible depending on gas flow velocity and mixture quality at spark location.
Technical Paper

Evaluation of Water and EGR Effects on Combustion Characteristics of GDI Engines Using a Chemical Kinetics Approach

2019-09-09
2019-24-0019
The modern spark ignition engines, due to the introduced strategies for limiting the consumption without reducing the power, are sensitive to both the detonation and the increase of the inlet turbine temperature. In order to reduce the risk of detonation, the use of dilution with the products of combustion (EGR) is an established practice that has recently improved with the use of water vapor obtained via direct or indirect injection. The application and optimization of these strategies cannot ignore the knowledge of physical quantities characterizing the combustion such as the laminar flame speed and the ignition delay, both are intrinsic property of the fuel and are function of the mixture composition (mixture fraction and dilution) and of its thermodynamic conditions. The experimental measurements of the laminar flame speed and the ignition delay available in literature, rarely report the effects of dilution by EGR or water vapor.
Technical Paper

Experimental-Numerical Analysis of Gasoline Spray-Wall Impingement at Ultra-High Injection Pressure for GCI Application

2023-08-28
2023-24-0082
Nowadays, in the perspective of a full electric automotive scenario, internal combustion engines can still play a central role in the fulfilment of different needs if the efficiency will be improved, and the tailpipe emission will be further limited. Gasoline Compression Ignition engines can offer a favourable balance between NOx, particulate, operating range. Stable operations are ensured by ultra-high gasoline injection pressure and tailored injection patterns in order to design the most proper local fuel distribution. In this context, engine simulations by means of CFD codes can provide insights on the design of the injection parameters, and emphasis must be placed on the capture of spray-wall impingement behaviour under those non-conventional conditions. This paper aims to analyse the spray-wall impingement behaviour of ultra-high gasoline spray using a combined experimental-CFD approach.
Journal Article

Geometric and Fluid-Dynamic Characterization of Actual Open Cell Foam Samples by a Novel Imaging Analysis Based Algorithm

2017-10-05
2017-01-9288
Metallic open-cell foams have proven to be valuable for many engineering applications. Their success is mainly related to mechanical strength, low density, high specific surface, good thermal exchange, low flow resistance and sound absorption properties. The present work aims to investigate three principal aspects of real foams: the geometrical characterization, the flow regime characterization, the effects of the pore size and the porosity on the pressure drop. The first aspect is very important, since the geometrical properties depend on other parameters, such as porosity, cell/pore size and specific surface. A statistical evaluation of the cell size of a foam sample is necessary to define both its geometrical characteristics and the flow pattern at a given input velocity. To this purpose, a procedure which statistically computes the number of cells and pores with a given size has been implemented in order to obtain the diameter distribution.
Technical Paper

Influence of Cylindrical, k, and ks Diesel Nozzle Shape on the Injector Internal Flow Field and on the Emerging Spray Characteristics

2014-04-01
2014-01-1428
Today, multi-hole Diesel injectors can be mainly characterized by three different nozzle hole shapes: cylindrical, k-hole, and ks-hole. The nozzle hole layout plays a direct influence on the injector internal flow field characteristics and, in particular, on the cavitation and turbulence evolution over the hole length. In turn, the changes on the injector internal flow correlated to the nozzle shape produce immediate effects on the emerging spray. In the present paper, the fluid dynamic performance of three different Diesel nozzle hole shapes are evaluated: cylindrical, k-hole, and ks-hole. The ks-hole geometry was experimentally characterized in order to find out its real internal shape. First, the three nozzle shapes were studied by a fully transient CFD multiphase simulation to understand their differences in the internal flow field evolutions. In detail, the attention was focused on the turbulence and cavitation levels at hole exit.
X