Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Journal Article

Development of Two-Mode Hybrid Powertrain with Enhanced EV Capability

2011-04-12
2011-01-0883
The two-mode hybrid system has several advantages over a one-mode EVT system: greater ability to transmit power mechanically and minimize electrical recirculation power, maximize fuel economy improvement and best meet demanding vehicle requirements. Extending the two-mode hybrid electric vehicle (HEV) to two-mode plug-in hybrid electric vehicle (PHEV) is significant not only to make the internal combustion engine (ICE)-based vehicle cleaner and more efficient in the near term, but also to provide a potential path to battery electric vehicles in the future. For PHEV, the enhanced electric drive capability is of vital importance to achieve best efficiency and best electric only performance. This paper describes the development of a prototype two-mode hybrid powertrain with enhanced EV capability (2MH4EV). The prototype drive unit includes an additional input brake to the existing General Motors FWD 2-mode HEV system.
Technical Paper

Controls Development for Clutch-Assisted Engine Starts in a Parallel Hybrid Electric Vehicle

2011-04-12
2011-01-0870
In a parallel hybrid electric vehicle, higher fuel economy gains are typically achieved if significant electric drive (or engine-off) operation is possible, shifting the engine operating schedule so that it only runs at medium to high load for best efficiency. To enable efficient engine-off driving, a typical configuration will have a disconnect clutch between the engine and the rest of the driveline. In some configurations, when engine-on operation is requested the disconnect clutch is applied in conjunction with the traction motor/generator to crank the engine (i.e., a flying engine start). In this paper we describe the development of a control system for a flying engine start using an engine disconnect clutch. The clutch is located between the engine and electric motor, which is connected to the input of a multispeed transmission. We first describe an initial control algorithm evaluation using a driveline model.
Technical Paper

Modeling and Drivability Assessment of a Single-Motor Strong Hybrid at Engine Start

2010-05-05
2010-01-1440
Using a clutch to disconnect and shut-off the engine when engine power is not required, the single-motor strong hybrid has the potential for significant fuel economy improvement with reduced costs and less system complexity. However, it is a challenge for the single-motor strong hybrid to maintain acceptable drivability at engine start since it requires diverting motor torque through a slipping clutch to start the engine. In this study, dynamic simulations of the hybrid transmission driveline with hydraulic and motor controls have been employed to assess the feasibility of the single-motor strong hybrid, to address drivability issues specific to this hybrid architecture at engine start, and to develop control methods to manage driveline disturbances to an acceptable level.
X