Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Journal Article

Multi-Plane Airflow Measurements in the Cylinder of a Tumble Based Engine

2014-10-13
2014-01-2705
The tumble flow in modern spark ignition engines is assuming an evermore important role for fuel guiding, air/fuel mixing and the generation of turbulence kinetic energy to enhance the combustion process. This paper describes results obtained with laser Doppler anemometry in multiple vertical planes in the cylinder of a motored, tumble flow engine and looks at the post processed data in terms of tumble ratios and mean and turbulence kinetic energies. The tumble results indicate very different flow fields in parallel planes lying in the main tumble direction, showing the complex nature of the flows in the cylinder. A simple method of integrating the tumble ratios from the different planes is suggested, leading to a tumble ratio more in line with those expected from an integrated method of measuring tumble, albeit these results are crank angle dependent. The tumble in a perpendicular plane shows unexpected asymmetries and values for the tumble.
Technical Paper

In-Cylinder Flow Structure Analysis by Particle Image Velocimetry Under Steady State Condition

2012-09-24
2012-01-1975
This paper deals with experimental investigations of the in-cylinder flow structures under steady state conditions utilizing Particle Image Velocimetry (PIV). The experiments have been conducted on an engine head of a pent-roof type (Lotus) for a number of fixed valve lifts and different inlet valve configurations at two pressure drops, 250mm and 635mm of H2O that correlate with engine speeds of 2500 and 4000 RPM respectively. From the two-dimensional in-cylinder flow measurements, a tumble flow analysis is carried out for six planes parallel to the cylinder axis. In addition, a swirl flow analysis is carried out for one horizontal plane perpendicular to the cylinder axis at half bore downstream from the cylinder head (44mm). The results show the advantage of using the planar technique (PIV) for investigating the complete flow structures developed inside the cylinder.
Technical Paper

GEM Ternary Blends of Gasoline, Ethanol and Methanol: An Initial Investigation into Fuel Spray and Combustion Characteristics in a Direct-Injected Spark-Ignition Optical Engine Using Mie Imaging

2012-09-10
2012-01-1740
Five different fuels, including gasoline, commercial E85, pure methanol and two mixtures of gasoline, ethanol and methanol, (GEM), configured to a target stoichiometric air fuel ratio have been investigated in a fully-optically-accessed engine. The work investigated effects of injection duration, and performed spray imaging, thermodynamic analysis of the combustion and OH imaging, for two fixed engine conditions of 2.7 and 3.7 bar NMEP at 2000 rpm. The engine was operated with constant ignition timing for all fuels and both loads. One of the most important results from this study was the suitability of a single type of injector to handle all the fuels tested. There were differences observed in the spray morphology between the fuels, due to the different physical properties of the fuels. The energy utilisation measured in this study showed differences of up to 14% for the different GEM fuels whereas an earlier in-vehicle study had showed only 2 to 3%.
Technical Paper

Unthrottled Engine Operation using Variable Valve Actuation: The Impact on the Flow Field, Mixing and Combustion

2007-04-16
2007-01-1414
The effect on the intake flow field, air fuel mixing processes, thermodynamic performance and emissions output has been investigated for a range of valve operating profiles. A standard speed load point of 2000 rpm and 2.7 bar IMEP720° has been reached by throttling the intake whilst running standard cam profiles, by early closing of both inlet valves (EIVC) and by early closing of each inlet individually to generate bulk swirl motions within the cylinder. Data has been recorded at stoichiometric air fuel ratios for both direct injection and port fuelled operation. The valve profiles have been applied to two single cylinder homogeneous gasoline direct injection (GDI) spark ignition engines, developed to investigate the potential of controlling engine load by limiting the inducted air mass using fully variable valve timing (FVVT) to reduce pumping losses at part load.
Technical Paper

The HOTFIRE Homogeneous GDI and Fully Variable Valve Train Project - An Initial Report

2006-04-03
2006-01-1260
There is a great deal of interest in new technologies to assist in reducing the CO2 output of passenger vehicles, as part of the drive to meet the limits agreed by the EU and the European Automobile Manufacturer's Association ACEA, itself a result of the Kyoto Protocol. For the internal combustion engine, the most promising of these include gasoline direct injection, downsizing and fully variable valve trains. While new types of spray-guided gasoline direct injection (GDI) combustion systems are finally set to yield the level of fuel consumption improvement which was originally promised for the so-called ‘first generation’ wall- and air-guided types of GDI, injectors for spray-guided combustion systems are not yet in production to help justify the added complication and cost of the NOx trap necessary with a stratified combustion concept.
X