Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Numerical Analysis on the Transitional Mechanism of the Wake Structure of the Ahmed Body

2016-04-05
2016-01-1592
The critical change in drag occurring on the Ahmed body when the slanted base has an angle of 30° is due to a transition in the wake structure. In a previous study on flow analysis across the Ahmed body, we investigated the unsteady wake experimentally using hot-wire and particle image velocimetry measurements. However, because the experimental analysis yielded limited data, the spatially unsteady wake behaviour, interaction between the trailing vortex and transverse vortices (up/downwash), and flow mechanism near the body were not discussed sufficiently. In this study, the unsteady wake structures were analysed computationally using computational fluid dynamics to understand these issues, and the hypothesis was tested. The slant angle was 27.5°, which is identical to that in the experiment and corresponds to a high drag condition indicated experimentally.
Technical Paper

Prediction of Aeroacoustical Interior Noise of a Car, Part-2 Structural and Acoustical Analyses

2016-04-05
2016-01-1616
One-way coupled simulation method that combines CFD, structural and acoustical analyses has been developed aiming at predicting the aeroacoustical interior noise for a wide range of frequency between 100 Hz and 4 kHz. Statistical Energy Analysis (SEA) has been widely used for evaluating transmission of sound through a car body and resulting interior sound field. Instead of SEA, we directly computed vibration and sound in order to investigate and understand propagation paths of vibration in a car body and sound fields. As the first step of this approach, we predicted the pressure fluctuations on the external surfaces of a car by computing the unsteady flow around the car. Secondly, the predicted pressure fluctuations were fed to the subsequent structural vibration analysis to predict vibration accelerations on the internal surfaces of the car.
Technical Paper

Prediction of Aeroacoustical Interior Noise of a Car, Part-1 Prediction of Pressure Fluctuations on External Surfaces of a Car

2016-04-05
2016-01-1617
A wall-resolving Large Eddy Simulation (LES) has been performed by using up to 40 billion grids with a minimum grid resolution of 0.1 mm for predicting the exterior hydrodynamic pressure fluctuations in the turbulent boundary layers of a test car with simplified geometry. At several sampling points on the car surface, which included a point on the side window, the door panel, and the front fender panel, the computed hydrodynamic pressure fluctuations were compared with those measured by microphones installed on the surface of the car in a wind tunnel, and effects of the grid resolution on the accuracy of the predicted frequency spectra were discussed. The power spectra of the pressure fluctuations computed with 5 billion grid LES agreed reasonably well with those measured in the wind tunnel up to around 2 kHz although they had some discrepancy with the measured ones in the low and middle frequencies.
Journal Article

Experimental Analysis on the Transitional Mechanism of the Wake Structure of the Ahmed Body

2016-04-05
2016-01-1591
The critical change in drag occurs in the Ahmed Body at 30° of the slanted base due to the transition in the wake structure. The distinctive feature of this bi-stage phenomenon, which consists of three-dimensional and quasi-axisymmetric separation states, is that the state drastically changes. Because this feature indicates that each state is stable around a critical angle, the transition is believed to be triggered by some instantaneous disturbances. Therefore, in our previous papers, we have paid attention on the unsteady behavior of the wake to determine the trigger that induces the transition. However, the relationship between the spatial transient behavior of the wake structures and the specific frequencies has not been clarified. Then, we tried to control the degree of interaction of the trailing vortices on the downwash by changing the aspect ratio of the slanted base.
Journal Article

Study on the Transient Behaviour of the Vortex Structure behind Ahmed Body

2014-04-01
2014-01-0597
On a bluff body which has a slant surface on the rear upper part, it is well known that the drastic change of a wake structure behind the rear body occurs at 30°of the slant angle. Originally, this critical phenomenon was pointed out by L.J. Janssen, W.H. Hucho, and H.J. Emmelmann in the middle of the 1970s. In 1984, S.R. Ahmed conducted systematic measurements by changing the rear slant angle of the bluff body, called the “Ahmed Body”, to find the critical phenomenon. In the 2000s, D.B. Sims-Williams found that the Ahmed Body had vortex structures which had specific frequencies. However, the relationship between the critical phenomenon and the unsteady behaviour has not been clarified yet. Therefore, as the first step of this study, we measured the unsteady wake behaviour for various slant angles to find the relationship between the Strouhal number and the angle. The characteristics of the fluctuation were captured with two hot-wires.
Journal Article

Differences between Air-Dam Spoiler Performances in Wind Tunnel and On-Road Tests

2014-04-01
2014-01-0609
An air-dam spoiler is commonly used to reduce aerodynamic drag in production vehicles. However, it inexplicably tends to show different performances between wind tunnel and coast-down tests. Neither the reason nor the mechanism has been clarified. We previously reported that an air-dam spoiler contributed to a change in the wake structure behind a vehicle. In this study, to clarify the mechanism, we investigated the coefficient of aerodynamic drag CD reduction effect, wake structure, and underflow under different boundary layer conditions by conducting wind tunnel tests with a rolling road system and constant speed on-road tests. We found that the air-dam spoiler changed the wake structure by deceleration of the underflow under stationary floor conditions. Accordingly, the base pressure was recovered by approximately 30% and, the CD value reduction effect was approximately 10%.
Journal Article

Vehicle Aerodynamics Simulation for the Next Generation on the K Computer: Part 1 Development of the Framework for Fully Unstructured Grids Using up to 10 Billion Numerical Elements

2014-04-01
2014-01-0621
A simulation framework for vehicle aerodynamics using up to 10 billion fully unstructured cells has been developed on a world-fastest class supercomputer, called the K computer, in Kobe, Japan. The simulation software FrontFlow/red-Aero was fully optimized on the K computer to utilize up to 10,000 processors with tens of thousands of cores. A hybrid parallelization method using MPI among processors and OpenMP among cores inside each processor was adopted. The code was specially tuned for unsteady aerodynamic simulation including large-eddy simulation, and low Mach number approximation was adopted to avoid excessive iterations usually required for the fully incompressible algorithm. The automated mesh refining system was developed to generate unstructured meshes of up to 10 billion cells. In the system, users only generate unstructured meshes in the order of tens of millions of cells directly using commercial preprocessing software.
Technical Paper

Comparison of Impact Due to an Aerodynamic Component in Wind Tunnel and On-Road Tests

2011-04-12
2011-01-0157
The aerodynamic performance of new vehicles is commonly determined using computational fluid dynamics (CFD) and wind tunnel tests. The final assessment is carried out by actual running tests. In particular, ideas regarding fuel consumption improvement that relate to components for the reduction of the coefficient of drag (CD) value are evaluated by coast-down tests. However, a difference often exists between the component's efficiency between wind tunnel tests and coast-down tests. Therefore, we focused on the efficiency of an air-dam spoiler in reducing CD values. A comparison was made between the aerodynamic effect of the air-dam spoiler in wind tunnel and coast-down tests in terms of the CD value and the wake structure behind the vehicle. To determine the relationship between the CD value and the wake structure behind the vehicle, we measured vehicle speed, wind velocity and direction, vehicle height, and pressure distribution on the back door.
X