Refine Your Search

Search Results

Author:
Viewing 1 to 7 of 7
Technical Paper

A Combustion Model for Multi-Component Fuels Based on Reactivity Concept and Single-Surrogate Chemistry Representation

2018-04-03
2018-01-0260
High fidelity engine simulation requires realistic fuel models. Although typical automotive fuels consist of more than few hundreds of hydrocarbon species, researches show that the physical and chemical properties of the real fuels could be represented by appropriate surrogate fuel models. It is desirable to represent the fuel using the same set of physical and chemical surrogate components. However, when the reaction mechanisms for a certain physical surrogate component is not available, the chemistry of the unmatched physical component is described using that of a similar chemical surrogate component at the expense of accuracy. In order to reduce the prediction error while maintaining the computational efficiency, a method of on-the-fly reactivity adjustment (ReAd) of chemical reaction mechanism along with fuel re-distribution based on reactivity is presented and tested in this study.
Technical Paper

Combustion Efficiency of a Plasma-Ignited Diesel Burner for DPF Regeneration

2015-04-14
2015-01-1010
Diesel burners have been used to regenerate diesel particulate filters (DPF) because of their simplicity in engine torque control and less oil dilution by fuel compared with the commonly used in-cylinder post fuel injection method. We previously developed a novel diesel burner using rotating plasma as an ignition source and found it to be effective in DPF regeneration. Here, we carry out in-depth studies on combustion efficiency of this plasma-ignited diesel burner and investigate the effects of influential factors such as plasma power, the amount of fresh air supplied, and O2 concentration in the exhaust gas on combustion characteristics of the burner. The obtained results show that fresh air supplied to the burner plays an important role in ignition and the early stage of combustion, and O2 concentration in the exhaust gas is identified as the most dominant factor for combustion efficiency.
Technical Paper

Model Based Study of DeNOx Characteristics for Integrated DPF/SCR System over Cu-Zeolite

2015-04-14
2015-01-1060
The SCR Filter simultaneously reduces NOx and Particle Matter (PM) in the exhaust and is considered an effective way to meet emission regulations. By combining the function of a Diesel Particulate Filtration (DPF) and a Selective Catalytic Reduction (SCR), the SCR Filter reduces the complexity and cost of aftertreatment systems in diesel vehicles. Moreover, it provides an effective reaction surface and potentially reduces backpressure by combining two devices into one. However, unlike traditional flow through type SCR, the deNOx reactions in the SCR Filter can be affected by the particulate filtration and regeneration process. Additionally, soot oxidation can be affected by the deNOx process. A 1-D kinetic model for integrated DPF and NH3-SCR system over Cu-zeolite catalysts was developed and validated with experimental data in previous work[1].
Technical Paper

Investigation of the Urea Evaporation and Mixing with Various Temperatures and Injector and Injection Angles in the Catalytic Muffler

2013-04-08
2013-01-1078
Diesel engine is being used widely in many industrial fields, as it provides merits in the aspects of higher thermal efficiency and less CO₂ emission. However, NOx regulations for diesel engines are being strengthened and it is impossible to meet the emission standard without aftertreatment systems such as SCR (Selective catalytic reduction), LNC (Lean NOx catalyst), and LNT (Lean NOx trap). Among the NOx reduction aftertreatments, Urea-SCR system is known as the most stable and efficient method to solve the problem of NOx emission. But this device has some issues associated with the ammonia slip phenomenon which is occurred by shortage of evaporation and thermolysis time, and that makes it difficult to achieve uniform distribution of the injected urea.
Technical Paper

The Research about Engine Optimization and Emission Characteristic of Dual Fuel Engine Fueled with Natural Gas and Diesel

2012-10-23
2012-32-0008
CNG/diesel dual-fuel engine is using CNG as a main fuel, and injects diesel only a little as an ignition priming. In this study, remodeling an existing diesel engine into dual-fuel engine that can inject diesel with high pressure by CRDI (Common Rail Direct Injection), and injecting CNG at intake port for premixing. The results show that CNG/diesel dual-fuel engine satisfied coordinate torque and power with conventional diesel engine. And CNG alternation rate is over 89% in all operating ranges of CNG/diesel dual-fuel engine. PM emission is lower 94% than diesel engine, but NOx emission is higher than diesel engine. The output of dual fuel mode is 95% by the diesel mode. At this time, amount of CO₂ and PM are decreased while CO, NOx, and THC are increased. In NEDC mode, exhaust gases except NOx are decreased.
Technical Paper

PM Reduction Performance and Regeneration Characteristics of Catalyzed Metal Foam Filters for a 3L Diesel Passenger Vehicle

2007-08-05
2007-01-3456
Exhaust gases of diesel vehicles are considered as a major reason of city air pollutions. The DOC(Diesel Oxidation Catalyst) and DPF(Diesel Particulate Filter) have been used to reduce the emissions of diesel vehicles. The DOC can oxides HC, CO and SOF(Soluble Organic Fraction) in the PM emissions, and the DPFs can filter the most of solid PM, such as carbon particles. As the DPFs, wall flow type ceramic honeycomb filters have been commonly used and now being still advanced. However, the cost and durability of the currently used DPFs are not perfect yet. Metal foam is the one of promising materials for the DPFs due to its cost effectiveness, good thermal conductivity and high mechanical strength. The metal foam can be produced with various pore sizes and strut thickness and finally can be coated with catalytic wash-coats with low cost.
Technical Paper

A New Diesel Particulate Filter Using a Metal Foam Filter Combined with Electrostatic Precipitation Mechanism

2007-04-16
2007-01-1267
Filtration studies about the metal foam filters combined with electrostatic precipitation, which can be used as a new DPF device, have been performed. Filtration efficiency of the metal foam filter is significantly low because most particles are penetrated through the large filter-pores. However the efficiency was considerably improved by forming a high electric field on the filter surface. The pressure drop was not significantly increased by the particle deposition because the particles do not completely clog the filter pores.
X