Refine Your Search

Search Results

Author:
Viewing 1 to 11 of 11
Journal Article

A Process for Delivering Extreme AFP Head Reliability

2019-03-19
2019-01-1349
Every now and then a good idea happens. The Modular head was a great idea and enabled the use of multiple types of AFP heads, ATL, ply cutting, part probing, etc. with the use of a single machine and machining cell. At the time the modular head was developed by Electroimpact circa 2004, the industry assumed (and accepted) that AFP was an unreliable process. It still isn’t as reliable as we’d like. One way of coping with this lack of reliability is to stage more than one head in the AFP cell so that a spare head of the exact same type is ready to jump into action if the head out on the floor has an issue. If the reliability of the AFP process were to increase 10x or 50x, would there still be a business case for the multiple AFP head system? The modular head may still win the day, but the metrics change. For instance, if there was only 20 minutes of down time for every head load, it may no longer be advantageous to have 2 heads of the exact same type in the cell.
Technical Paper

AFP Automated Inspection System Performance and Expectations

2017-09-19
2017-01-2150
In AFP manufacturing systems, manually inspection of parts consumes a large portion of total production time and is susceptible to missing defects. The aerospace industry is responding to this inefficiency by focusing on the development of automated inspection systems. The first generation of automated inspection systems is now entering production. This paper reviews the performance of the first generation system and discusses reasonable expectations. Estimates of automated inspection time will be made, and it will be shown that the automated solution enables a detailed statistical analysis of manufactured part quality and provides the data necessary for statistical process control. Data collection allows for a reduction in rework because not all errors need to be corrected. Expectations will be set for the accuracy for both ply boundary and overlap/gap measurements. The time and resource cost of development and integration will also be discussed.
Journal Article

Automated In-Process Inspection System for AFP Machines

2015-09-15
2015-01-2608
In many existing AFP cells manual inspection of composite plies accounts for a large percentage of production time. Next generation AFP cells can require an even greater inspection burden. The industry is rapidly developing technologies to reduce inspection time and to replace manual inspection with automated solutions. Electroimpact is delivering a solution that integrates multiple technologies to combat inspection challenges. The approach integrates laser projectors, cameras, and laser profilometers in a comprehensive user interface that greatly reduces the burden on inspectors and decreases overall run time. This paper discusses the implementation of each technology and the user interface that ties the data together and presents it to the inspector.
Journal Article

Improving AFP Cell Performance

2014-09-16
2014-01-2272
The Automated Fiber Placement (AFP) machine layup run time in large scale AFP layup cells consumes approximately 30% of the entire part build time. Consequentially, further reductions to the run time of the AFP machine part programs result in small improvements to the overall cycle time. This document discusses how Electroimpact's integrated system and cell design reduces the overall cycle time by reducing the time spent on non-machine processes.
Journal Article

Increasing Machine Accuracy by Spatially Compensating Large Scale Machines for Use in Constructing Aerospace Structures

2013-09-17
2013-01-2298
Starting in 2003 Electroimpact began development on a comprehensive kinematic and compensation software package for machines with large envelopes. The software was first implemented on Electroimpact's Automatic Fiber Placement (AFP) equipment. Implementation became almost universal by 2005. By systematically collecting tracker measurements at various machine poses and then using this software to optimize the kinematic parameters of the machine, we are able to reliably achieve machine positional accuracy of approximately 2x the uncertainty of the measurements themselves. The goal of this paper is to document some of the features of this system and show the results of compensation in the hope that this method of machine compensation or similar versions will become mainstream.
Journal Article

Unique Non-Orthogonal TCP Intersecting AFP Axes Design

2012-09-10
2012-01-1862
Automated Fiber Placement (AFP) machines typically consist of 3 linear and 3 rotary axes of motion in order to manufacture complex shapes. These axes are generally orthogonal and semi-coupled. In these designs, a linear axis move will not affect the rotary axes orientation whereas a rotary axis move will affect the Tool Center Point (TCP) location with respect to the linear axes position. The wide range of motion required to maintain the compaction-axis normality needed for carbon fiber layup tends to prevent all of the rotational axes from passing through the TCP. The location and arrangement of these rotational axes has a great effect on the AFP machine performance and controllability during high speed layup. This paper presents a unique kinematic AFP axes design consisting of replacing the 3 orthogonal rotary axes with 3 tool-center-point-intersecting coupled-axes which decouple the linear axes from the rotary axes.
Journal Article

One Piece AFP Spar Manufacture

2011-10-18
2011-01-2592
Manufacturing C cross-sectional components with high aspect ratios out of carbon fiber reinforced composites is desirable by the aircraft industry. Modular AFP heads with short, fixed tow path have the fundamental performance characteristics required to successfully and productively automate the production of these part families. Aircraft parts in this family include wing spars, stringers, and fuselage frames.
Journal Article

Production Implementation of Multiple Machine, High Speed Fiber Placement for Large Structures

2010-09-28
2010-01-1877
A two machine Automated Fiber Placement (AFP) cell capable of laying 1/2\mi and 1/4\mi tow at rates up to 1800\mi/min (45.7 m/min), including feeds and cuts, has been implemented for the manufacture of large primary aircraft structures. The control architecture of the cell is such that part programs are machine independent and can run on either machine or simultaneously on both machines at the same time. A Central Cell Controller pushes part programs to each AFP machine and coordinates the cell. Volumetric accuracy of the two machines is under 0.008\mi (0.2 mm) radial error in the entire compensated envelop, which is approximately 64' x 21' x 14' (19.5 m x 6.4 m x 4.3 m) for each machine. This is accomplished through optimization of volumetric kinematic compensation parameters using a linear numerical solver. The machines reference a common coordinate system which allows great flexibility in part programming.
Technical Paper

A Two Tower Riveting Machine with a True Z Axis

2004-09-21
2004-01-2807
The A380 aircraft is the largest passenger aircraft ever built and an appropriate machine was required to accomplish the fastening of the wing plank to stringer and buttstrap joints. The lower wing panels are curved along the length and move 1.42m out of plane. All previous E4000 machines had clampup heads that would extend and retract whatever distance was required to contact the wing panel. To improve toolpoint alignment, Electroimpact added a Z-axis that moves the yoke in order to reduce the necessary travel envelope of the clamp table axes and to cause them to clamp in the same plane regardless of panel position along the Z-axis.
Technical Paper

Method of Accurate Countersinking and Rivet Shaving

2001-09-10
2001-01-2569
Wing skin riveting and bolting requires the surface to be flush to +/–.025mm(.001″) to produce an acceptable finish. Using the method described in this paper, automated wing riveting technology and panel assembly techniques can achieve better shave height and countersink accuracies than have previously been possible in production.
X