Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Vibro-Acoustic Characterisation of Lightweight Structures: A Numerical-Experimental Approach

2012-06-13
2012-01-1526
In many industrial applications, such as in the automotive and machine building industry, there is a continuous push towards lightweight materials motivated by material and energy savings. This increased use of lightweight materials, however, can strongly compromise the Noise, Vibration and Harshness (NVH) performance of the final products. Especially in times where the NVH performance not only receives a higher legislative attention, but also becomes a commercial differentiator, this also represents a key point of attention for designers and directs research activities towards new experimental and numerical techniques to accurately predict the NVH performance of lightweight systems as early as possible in the design process. The presented work discusses novel measurement setup, specifically developed for examining the vibro-acoustic behavior of lightweight structures. The test stand consists of a concrete cavity of 0.83 m₃.
Journal Article

A Hybrid Wave Based - Modally Reduced Finite Element Method for the Efficient Analysis of Low- and Mid-frequency Car Cavity Acoustics

2009-05-19
2009-01-2214
This paper presents a newly developed hybrid simulation technique for uncoupled acoustic analysis of interior cavities. This method applies a Wave Based model for a large, geometrically simple portion of the acoustic cavity. The superficial details of the problem domain are modeled using a modally reduced finite element model. The resulting hybrid model benefits from the computational efficiency of the Wave Based Method, while retaining the Finite Element Method's ability to model the actual geometry of the problem in great detail. Application of this approach to the analysis of a moderately simplified acoustic car cavity shows the improved computational efficiency as compared to classical finite element procedures and illustrates the potential of the hybrid method as a powerful tool for the analysis of three-dimensional interior acoustic systems.
Technical Paper

Continuously Produced Honeycomb Sandwich Materials for Automotive Applications

2002-03-04
2002-01-1272
The demands for automotive interior and exterior panels request an optimal combination of materials and cost efficient production processes. Mechanical and acoustical requirements and a weight target result today often in the selection of a sandwich design with a cost efficient and recyclable core material. Two new cost efficient honeycomb materials and their continuous production processes have been developed at the K.U.Leuven. These materials and production methods enable an automated in-line production of paper and polypropylene (PP) based honeycombs for automotive sandwich panels and parts. The production concepts, possible material combinations and basic material properties for automotive sandwich parts are presented.
X