Refine Your Search

Search Results

Author:
Viewing 1 to 7 of 7
Journal Article

Application of CAE in Design Optimization of a Wet Dual Cutch Transmission and Driveline

2014-04-01
2014-01-1755
This paper describes the application of CAE tools in the design optimization of a DCT and driveline system of a passenger vehicle, with emphasis on NVH performance. The multi-body dynamics simulation tools are employed for driveline system analysis. The MBD model consists of the engine, transmission, clutch, drive shafts, tires and vehicle. The wheel slip effects are considered in the calculation of shuffle frequencies. In the analysis of gear whine, the transmission housing, gears and shafts are modeled by detailed 3-D finite element models, so that the mesh stiffness of the gears and the housing support stiffness are described more accurately. The calculated velocity spectra of the housing are presented. The prediction of gear rattle in the transmission is carried out. The loose gear acceleration index and the averaged impact power of free gears are calculated to assess the rattle generation potential and the level of rattle severity.
Technical Paper

CFD Modelling of 3-Way Catalytic Converters with Detailed Catalytic Surface Reaction Mechanism

2004-03-08
2004-01-0148
This paper presents a 3-D CFD modelling of flow and heterogeneous reactions in catalytic converters. The pressure and velocity fields in the catalytic converters are calculated by the state of the art modelling technique for the flow resistance of catalyst substrate. A surface reaction model is applied to predict the performance of a three-way Pt/Rh catalyst. A reaction mechanism with detailed catalytic surface reactions for the 3-way catalyst is applied. The novelty of this approach is the use of a surface chemistry solver coupled with a 3-D CFD code in the entire computational domain of the catalyst substrate that allows flow distribution for complex configurations to be accounted for. The concentrations of the gas species and the site species are obtained. A comparison between the simulation results and the experimental data of a three-way catalyst was made.
Journal Article

Design of the Exhaust Manifold of a Turbo Charged Gasoline Engine Based on a Transient Thermal Mechanical Analysis Approach

2014-10-13
2014-01-2882
The present paper describes a CAE analysis approach to evaluate the design of exhaust manifold of a turbo charged gasoline engine. It allows design engineers to identify structural weakness at the early stage or to find the root cause of exhaust manifold failures. A transient none-linear finite element method is used to calculate the plastic deformation and thermal mechanical behaviors of the exhaust manifold assembly during thermal shock cycles, which include rated speed full load, rated speed motored and idle speed conditions. A transient heat transfer simulation is performed to provide thermal boundary conditions for the nonlinear stress/strain analysis. The finite element model includes a part of cylinder head, exhaust manifold, gaskets, turbo charger housing, catalytic converter, brackets, bolts and nuts. The results show that plastic deformation is the main cause of manifold cracking and the manifold flange distortion causes the exhaust leakage.
Technical Paper

In-cylinder CFD Simulation of a New 2.0L Turbo Charged GDI Engine

2011-04-12
2011-01-0826
This paper describes the application of CFD tools in the design optimization of intake ports, combustion chamber and injector of SAIC Motor's 2.0L turbo charged direct injection gasoline engine. For a more realistic simulation of spray processes, detailed investigations of mesh dependency, wall impingement models were conducted. The validation of the spray simulation was carried out by comparison between the experimental data and calculation results. To investigate the droplet-wall interactions, a comparison between the results from Bai's model and the instantaneous evaporation model was made. With the Star-CD code, the in-cylinder air motion, fuel injection and air/fuel mixing in the combustion system with central injector were evaluated, at different engine operation conditions and start of injection timings. Several proposed intake port options, with different tumble levels, were numerically investigated and compared.
Technical Paper

Modelling and Optimization of SCR-Exhaust Aftertreatment Systems

2005-04-11
2005-01-0969
This paper presents a modelling approach to the design optimization of Selective Catalytic Reduction (SCR) systems. The present study is concerned with ammonia slip and conversion efficiency of oxides of nitrogen (NOx), which are two major issues of SCR technologies. A Computational Fluid Dynamics (CFD) code is employed to simulate the mixing characteristics with the purpose of optimization of the concentration distribution of the reducing agent. The physical processes including urea spray atomization, droplet evaporation, urea decomposition and turbulent mixing are accounted for in the modelling method. The Lagrangian discrete phase model is used to describe the urea spray, which contains sub-models for droplet breakup and evaporation. A reaction model of urea decomposition is proposed. The geometry of a specific example includes two air-assisted fluid nozzles, optimized mixing elements of the static mixer, and the SCR converter with two layers of substrates.
Technical Paper

Thermal-Mechanical Fatigue Prediction of Aluminum Cylinder Head with Integrated Exhaust Manifold of a Turbo Charged Gasoline Engine

2016-04-05
2016-01-1085
The present paper describes a CAE analysis approach to evaluate the thermal-mechanical fatigue (TMF) of the cylinder head of a turbo charged GDI engine with integrated exhaust manifold. It allows design engineers to identify structural weakness at the early stage or to find the root cause of cylinder head TMF failures. At SAIC Motor, in test validation phase a newly developed engine must pass a strict durability test on test bed under thermal cycling conditions so that the durability characteristics can be evaluated. The accelerated dynamometer test is so designed that it gives equivalent cumulative damage as what would occur in the field. The duty cycle includes rated speed full load, rated speed motored and idle speed conditions. A transient none-linear finite element method is used to calculate the plastic deformation and thermal mechanical behaviors of the cylinder head assembly during thermal cycling.
Technical Paper

Thermo-Mechanical Fatigue and Life Prediction of Turbocharged Engine Cylinder Head

2020-04-14
2020-01-1163
In order to predict more accurately the cracking failure of cylinder head during the durability test of turbocharged engine in the development, a comprehensive evaluation method of cylinder head durability is established. In this method, both high cycle and low cycle fatigue performance are calculated to provide failure assessment. The method is then applied to investigate the root cause of cracking of cylinder head and assess design optimizations. Multidisciplinary approach is adopted to optimize high cycle fatigue and low cycle fatigue performance simultaneously to achieve the best comprehensive performance. In this paper, the details of the method development are described. First, the high cycle and low cycle fatigue properties of cylinder head material were measured at different temperature condition, and the fatigue life and high temperature creep properties of materials under thermo-mechanical fatigue cycle were also tested.
X