Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Journal Article

Long-Haul Truck Sleeper Heating Load Reduction Package for Rest Period Idling

2016-04-05
2016-01-0258
Annual fuel use for sleeper cab truck rest period idling is estimated at 667 million gallons in the United States, or 6.8% of long-haul truck fuel use. Truck idling during a rest period represents zero freight efficiency and is largely done to supply accessory power for climate conditioning of the cab. The National Renewable Energy Laboratory’s CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck thermal management systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers will enable smaller, lighter, and more cost-effective idle reduction solutions. In addition, if the fuel savings provide a one- to three-year payback period, fleet owners will be economically motivated to incorporate them.
Technical Paper

Investigation and Validation of Transmission Loss for Vehicle Components with a Large Aperture

2001-04-30
2001-01-1621
Determination of the sound transmission loss (STL) of a vehicle component that has a large aperture, such as an air exhauster or an air extraction opening, always presents a challenge to an acoustics engineer. The complexity of the aperture's physical conditions cannot be easily solved with conventional, analytical or numerical methods. A systematic study of investigating the transmission loss characteristics of the large aperture is presented in this paper. Both conventional potential noise reduction predictions of large apertures and SEA simulations were performed. Transmission losses with different acoustic treatments were measured and predicted when using AutoSEA2. Finally, correlation between measured results and predications were developed. The ultimate goal of this study is to reduce the costly transmission loss measurements with correlated analytical estimations
X