Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Journal Article

Progress in Aeroacoustic and Climatic Wind Tunnels for Automotive Wind Noise and Acoustic Testing

2013-04-08
2013-01-1352
There has been significant progress in developing test facilities for automotive wind noise and automotive components since the early 1990s. The test technology is critical to the development of modern vehicles, and essentially every major automotive manufacturer owns and operates their own aeroacoustic wind tunnel, or has rental access to one and conducts a significant amount of wind noise testing. The current status for climatic wind tunnels is that many new CWTs are being defined with acoustic test requirements. These test capabilities in AAWTs and CWTs will continue to enable the development of vehicles with better wind noise attributes, fewer problems with sunroof ‘booming’, and lower noise levels for HVAC and auxiliary systems. In the future, it is expected that the test demand for AAWTs and CWTs with low acoustic background noise will continue to increase as customers expect better automotive products, especially across more of the product line.
Technical Paper

The Plenum Method Versus Blockage Corrected Nozzle Method for Determining Climatic Wind Tunnel Air Speed

2004-03-08
2004-01-0668
Recently, computational fluid dynamics (CFD) was applied to investigate blockage (or velocity) corrections using the nozzle method for a climatic wind tunnel (CWT) test environment (SAE 2003-01-0936). The study included two blockage corrections to the nozzle method reference velocity: vehicle frontal velocity and vehicle upper surface pressure trace. These methods resulted in well correlated predictions between the open road and CWT flow conditions. These CFD predicted blockage corrections are experimentally verified in a climatic wind tunnel in this study. A non-intrusive method applying particle image velocimetry is applied to acquire the velocity field in front of the test vehicle. The experimental data verifies the blockage correction predictions derived from the previous CFD work.
Technical Paper

Determining Blockage Corrections in Climatic Wind Tunnels Using CFD

2003-03-03
2003-01-0936
Computational Fluid Dynamics (CFD) was applied to investigate blockage effects (or velocity correction) in a climatic wind tunnel (CWT) test environment. Different blockage effects in the CWT were modeled using four simplified vehicles that approximated a sedan, an SUV, a pickup truck, and a minivan. Blockage dependence on nozzle size and spacing between the nozzle exit plane (NEP) and the vehicle were also investigated. The study quantified the blockage effect using different correction methods based on vehicle frontal velocity profiles and upper surface pressure traces. The blockage-free solution was also simulated for each vehicle in an ‘open road’ or free air condition. The CFD study revealed that all the test cases resulted in blockage correction factors, defined by Vactual/Vsimulated greater than 1.0. This is a condition in which the uncorrected wind tunnel velocity was higher than the ‘open road’ condition.
X