Refine Your Search

Search Results

Author:
Viewing 1 to 6 of 6
Technical Paper

Side Impact Risk for 7-13 Year Old Children

2008-04-14
2008-01-0192
The purpose of this paper is to assess the vehicle environment that a child occupant, between the ages of seven and thirteen years old, is exposed to in a real world crash. The focus of analysis is on those child occupants that are seated at the struck side in a lateral collision. This study was based on data extracted from the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS) between years 1991-2006. Analysis was based upon the evaluation of the projected consequence of injury to the child occupants. The societal costs generated as a result of occupant injuries were quantified. The societal cost, or Harm, acts as a measure of consequence of occupant exposure to the vehicle environment, when involved in a collision. The Harm was determined as a function of ΔV, principal direction of force, vehicle extent of damage, the pattern of damage to the vehicle, and the magnitude of intrusion based on the occupant seating position.
Journal Article

A Study of the Rear Seat Occupant Safety using a 10-Year-Old Child Dummy in the New Car Assessment Program

2008-04-14
2008-01-0511
The National Highway Traffic Safety Administration (NHTSA) conducted a total of 28 frontal crashes in the New Car Assessment Program (NCAP) involving the 10-year-old child Hybrid III dummy. The 10-year-old child dummy was in the rear seat. All types of vehicles (passenger cars, sport utility vehicles, vans and pick-up trucks) were tested to assess the effect of restraint systems such as booster and pretensioner on the rear seat occupant. In this study, the readings of the 10-year-old child dummy in rear-left and rear-right seat positions are examined. The authors apply a possible 5 star rating system, based on head and chest readings of the 10-year-old dummy. The paper also assesses the safety performance of rear seat occupants and the effect of the restraint systems on a child in the rear seat. This paper suggests that a star rating for rear seat occupants is independent of the present ratings for the driver and front adult passenger in NCAP.
Technical Paper

A Study of the IIHS Frontal Pole Impact Test

2008-04-14
2008-01-0507
According to the Fatality Analysis Reporting System (FARS, 1995-2004), over 20 percent of fatal frontal crashes are into fixed narrow objects such as trees and utility poles in real world crashes. The Insurance Institute for Highway Safety (IIHS) has studied the frontal pole impact test since 2005, conducting a series of tests using passenger cars that are rated “Good” from the IIHS frontal offset test. Passenger cars were impacted into a 10-inch-diameter rigid pole at 64-kph. The alignment of the pole along the centerline of the vehicles in frontal impact was varied to study the influence on dummy injury metrics. This paper evaluates the frontal center pole test conducted by the IIHS. The IIHS tests 21 crashes impacted by the rigid pole using 5 vehicle models with two dummies in the front seat. Intrusions and dummy readings were reviewed according to the frontal offset rating criteria of the IIHS for structural performance and injury measurement.
Technical Paper

Comparative FE Analysis of Lower Extremity Injury for Hybrid III, THO/LX, and Human Model in NCAP Frontal Offset Crash

2005-04-11
2005-01-0610
Crash injuries in lower extremities are usually not fatal but may result in long-term impairment and immobility. Current understanding of these injuries is still quite limited from the biomechanical point of view. It is known that they occur often during frontal offset collisions in which intrusion of the toe pan and instrument panel frequently occur but are not always associated with their causation. Assessment of these injuries using the Hybrid III dummy is limited because of its limited biofidelic structure and inaccurate injury criteria. Accordingly, THOR-LX, the retrofit of the lower leg of the Hybrid III, has been introduced with an improved design for ankle motion and capacity of injury prediction. In this study, the different ankle joint characteristics and outcomes of both the Hybrid III and the THOR/LX have been quantitatively analyzed for an NCAP 40% offset crash with a small size sedan.
Technical Paper

VEHICLE COMPATIBILITY IN CAR -TO-CAR FRONTAL OFFSET CRASH

2001-06-04
2001-06-0247
A series of full-scaled car-to-car frontal offset crash tests within passenger car category were conducted to research the current incompatible situations using Hyundai Autonomous Crash Vehicle System. The first test using two midsize cars with 50% overlap and 50km/h each was conducted to compare the injury levels and deformations with the offset regulation case, and check the test results within two same vehicles for test repeatability. The second test using midsize and minisize car with mass ratio of 1.58 :1 was done. The last test with MPV and small car at closing speeds of 120kph was followed. Mass, stiffness and geometry effects are investigated. Simulation results of car-to-car frontal offset and side impacts in case of MPV-to-small and small-to-MPV are included for better understanding. Finally a few design recommendations are also suggested.
Technical Paper

Development of Finite Element US-SID and Euro-SID Model

2000-03-06
2000-01-0160
In contrast to the other types of crash simulation, integrated analysis is needed to perform the side impact simulation, and the acquired injury values are so sensitive that they are difficult to assess by the deformed vehicle structure itself. Therefore, the accurate FE side impact dummy (US-SID, Euro-SID) models are needed to predict the various injury values in side impact simulation. In the past, rigid body model or coarse FE model have been used. The advantage of these models is low computing power, but they have lack of predictability especially in the high-speed crash analysis such as NCAP and car-to-car simulations. The deviations are caused by inaccurate geometry and improper material characteristic expression of the side impact dummy models. In this paper, the development of new side impact dummy models and their applications at full car simulations are introduced. Also, the analyses about injury values are illustrated in side impact simulation.
X