Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Development of an Energy-Saving Occupied-Zone HVAC System (OZ HVAC)

2012-04-16
2012-01-0320
In an electric vehicle, a maximum cruising range is adversely affected by electric power consumption of auxiliary electric components for heating and cooling. Therefore, it is important for the air-conditioning to consume energy as efficiently as possible. This study describes how a proposed Occupied-Zone(OZ) HVAC system has attained a significant increase in the cruising range of an electric vehicle by air-conditioning occupied seats only. The idea of OZ HVAC is to confine air-conditioning to occupied-zones only. The OZ HVAC has an option of selectively air-conditioning three zones corresponding to driver, passenger and rear seating positions, while a conventional HVAC system air-conditions a whole cabin regardless of occupancy in each zone, which results in more power consumption compared to the proposed idea.
Technical Paper

The Study of the Effects of Nonthermal Plasma-Photocatalyst Combined Reactor on Hydrocarbon Decomposition and Reduction during Cold Start and Warm-up in a SI Engine

2002-10-21
2002-01-2707
Among the recent research ideas to reduce hydrocarbon emissions emitted from SI engines till light-off of catalyst since cold start are those exploiting non-thermal plasma technique and photo-catalyst that draws recent attention by virtue of its successful application to practical use to clean up the atmosphere using the feature of its relative independence on temperature. Based on the previous research results [6] obtained with model exhaust gases using an experimental emissions reduction system that utilizes the non-thermal plasma and photo-catalyst technique, further investigation was conducted on a production N/A 1.5 liter DOHC gasoline engine during cold start to warm-up. For the effects of non-thermal plasma-photocatalyst combined reactor, 10% concentration reduction was achieved with the fuel component paraffins, and the large increase in non-fuel paraffinic components and acetylene concentrations were similar to those of base condition.
Technical Paper

Experimental Study on the Oxidation of Model Gases - Propylene, N-Butane, Acetylene at Ambient Temperature by Non-Thermal Plasma and Photocatalyst

2001-09-24
2001-01-3514
Two features to facilitate chemical reactions at low temperature, non-thermal plasma and the weak dependency of photocatalyst on temperature, have been exploited by many researchers to effectively decompose hydrocarbon emissions emitted until the light-off of a three-way catalyst in spark ignition engines. To develop a realizable emissions reduction reactor, as part of such effort, this study investigates for the three model gases, propylene, n-butane and acetylene: 1) the conversion efficiency of the emissions reduction reactor, which utilizes the effect of dissociation, ionization-by-collision of the non-thermal plasma and the photocatalytic effect of TiO2, and 2) the concentrations of the products such as acetaldehyde, acetic acid, polymerized hydrocarbons and NO2. The operating parameters to obtain the plasma energy density ranging from 7.8 to 908 J/L were varied.
X