Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Developing Drivetrain Robustness for Small Engine Testing

2013-04-08
2013-01-0400
The increased demand in fuel economy and the reduction of CO₂ emissions results in continued efforts to downsize engines. The downsizing efforts result in engines with lower displacement as well as lower number of cylinders. In addition to cylinder and displacement downsizing the development community embarks on continued efforts toward down-speeding. The combination of the aforementioned factors results in engines which can have high levels of torsional vibrations. Such behavior can have detrimental effects on the drivetrain particularly during the development phase of these. Driveshafts, couplings, and dynamometers are exposed to these torsional forces and depending on their frequency costly damages in these components can occur. To account for these effects, FEV employs a multi-body-system modeling approach through which base engine information is used to determine optimized drivetrain setups. All mechanical elements in the setup are analyzed based on their torsional behavior.
Technical Paper

Interior Noise Simulation for Improved Vehicle Sound

2001-04-30
2001-01-1539
In the recent past, interior noise quality has developed into a decisive aspect for the evaluation of overall vehicle quality. At most operating points, the dominating interior noise share is generated by the powertrain. Interior noise simulation is a new tool for upgrading interior noise. Based on measurements of air- and structure-borne noise excitations caused by the powertrain, the interior noise shares are determined by applying the properties of the transfer paths. By superimposing the individual interior noise shares, the overall interior noise can be predicted. Well before the engine is operated in the vehicle for the first time, annoying interior noise shares, their causes and their transfer paths can be identified by subjective and objective analysis. This enables the engineer to focus on vital optimization measures as to excitations occurring at the engine as well as to transfer paths in the vehicle.
Technical Paper

Comprehensive Combustion Noise Optimization

2001-04-30
2001-01-1510
Combustion noise plays a considerable role in the acoustic tuning of gasoline and diesel engines. Even though noise levels of modern diesel engines reach extremely low values, they are still higher than those of conventional gasoline engines. On the other hand, new combustion procedures designed to improve fuel consumption lead to elevated combustion noise excitations as in case of today's direct injecting gasoline engines whose vibration excitation and airborne noise emissions are slightly increased during stratified operation. The partly conflicting development goals resulting from this can only be realized by integrating the NVH specialists' expertise into every development step from concept to SOP.
X