Refine Your Search

Topic

Search Results

Author:
Technical Paper

A Turbulence and Cavitation Induced Breakup Model for Fuel Spray Modeling

2014-10-13
2014-01-2737
Fuel spray atomization process is known to play a key role in affecting mixture formation, combustion efficiency and soot emissions in direct injection engines. The fuel spray Computational Fluid Dynamics (CFD) modeling technology can be an effective means to study and predict spray characteristics such as penetration, droplet size and droplet velocity, and as a consequence, to drastically reduce experimental work during the engine development process. For this reason, an accurate numerical simulation of the spray evolution process is imperative. Different approaches and various models based on aerodynamically induced breakup mechanism have been implemented to simulate spray atomization process in earlier studies, and the effects of turbulence and cavitation from the injector nozzle is recently being concerned increasingly by engine researchers. In this study, an enhanced turbulence and cavitation induced primary breakup model combining aerodynamic breakup mechanism is developed.
Technical Paper

An Optical Study on the Combustion of Gasoline/PODEn Blends in a Constant Volume Vessel

2018-09-10
2018-01-1748
Polyoxymethylene dimethyl ethers (PODEn) have high cetane number, high oxygen content and high volatility, therefore can be added to gasoline to optimize the performance and soot emission of Gasoline Compression Ignition (GCI) combustion. High speed imaging was used to investigate the spray and combustion process of gasoline/PODEn blends (PODEn volume fraction 0%-30%) under various ambient conditions and injection strategies in a constant volume vessel. Results showed that with an increase of PODEn proportion from 10% to 30%, liquid-phase penetration of the spray increased slightly, ignition delay decreased from 3.8 ms to 2.0 ms and flame lift off length decreased 29.4%, causing a significant increase of the flame luminance. For blends with 20% PODEn, when ambient temperature decreased from 893 K to 823 K, the ignition delay increased 1.3 ms and the flame luminance got lower.
Technical Paper

CFD Modeling of Mixture Preparation and Soot Formation in a Downsized Gasoline Direct Injection Engine

2016-04-05
2016-01-0586
With increasingly stringent requirements and regulations related to particulate matter(PM) emissions, manufacturers are paying more and more attention to emissions from gasoline direct injection(GDI) engines. The present paper proposes an improved two-step soot model. The model is applied in the Kiva-Chemkin program to simulate the processes of spray impinging, fuel mixture preparation, combustion and soot formation in a typical turbocharged downsized GDI engine. The simulation results show that soot formation in the GDI engine is attributed to non-uniform distribution of the air-fuel mixture and pool fire of wall film in the cylinder. Under homogeneous mode, increasing the injection advance angle can optimize fuel atomization and improve air-fuel mixing, thus reducing soot formation. However, an excessive injection advance angle may cause spray to impinge on the cylinder wall and this will sharply increase the soot emission.
Technical Paper

Combustion and Emission Characteristics of WDF in a Light-Duty Diesel Engine over Wide Load Range

2017-10-08
2017-01-2265
Wide Distillation Fuel (WDF) refers to the fuels with a distillation range from initial boiling point of gasoline to final boiling point of diesel. Recent experimental results have shown WDF by blending 50% gasoline and 50% diesel (G50) exhibits much lower soot emissions than diesel at medium load with similar thermal efficiency. However, the engine performances fueled by G50 at both low load end and high load end are still unknown. In this study, the combustion and emission characteristics of G50 and diesel are compared over a wide load range from 0.2 MPa IMEP to 1.4 MPa IMEP at a light-duty diesel engine. The results shown that at 0.2 MPa IMEP, G50 exhibits low combustion stability and thermal efficiency. With the increase of load, the poor combustion quality of G50 is improved. G50 can achieve soot-free combustion up to 1.0 MPa IMEP, while diesel cannot.
Technical Paper

Combustion and Emission Characteristics of a PPCI Engine Fuelled with Dieseline

2012-04-16
2012-01-1138
In this paper blends of diesel and gasoline (dieseline) fuelled Partially Premixed Compression Ignition (PPCI) combustion and the comparison to conventional diesel combustion is investigated. The tests are carried out using a light duty four cylinder Euro IV diesel engine. The engine condition is maintained at 1800 rpm, 52 Nm (equivalent IMEP around 4.3 bar). Different injection timings and different amounts of EGR are used to achieve the PPCI combustion. The results show that compared to the conventional diesel combustion, the smoke and NOx emissions can be reduced by more than 95% simultaneously with dieseline fuelled PPCI combustion. The particle number total concentration can be reduced by 90% as well as the mean diameter (from 54 nm for conventional diesel to 16 nm for G50 fuelled PPCI). The penalty is a slightly increased noise level and lower indicated efficiency, which is decreased from 40% to 38.5%.
Journal Article

Comparative Study on Gasoline HCCI and DICI Combustion in High Load Range with High Compression Ratio for Passenger Cars Application

2017-10-08
2017-01-2257
This study compared the combustion and emission characteristics of Homogeneous Charge Compression Ignition (HCCI) and Direct Injection Compression Ignition (DICI) modes in a boosted and high compression ratio (17) engine fueled with gasoline and gasoline/diesel blend (80% gasoline by volume, denoted as G80). The injection strategy was adjusted to achieve the highest thermal efficiency at different intake pressures. The results showed that Low Temperature Heat Release (LTHR) was not observed in gasoline HCCI. However, 20% additional diesel could lower down the octane number and improve the autoignition reactivity of G80, which contributed to a weak LTHR, accounting for approximately 5% of total released heat. The combustion efficiency in gasoline DICI was higher than those in gasoline HCCI and G80 HCCI, while the exhaust loss and heat transfer loss in DICI mode were higher than those in HCCI mode.
Technical Paper

Comparison Between Air-Assisted and Airless Urea Spray for Diesel SCR System by PDA and CFD

2012-04-16
2012-01-1081
The urea NOx selective catalytic reduction (SCR) is an effective technique for the reduction of NOx emitted from diesel engines. Urea spray quality has significant effect on NOx conversion efficiency. The droplet diameter and velocity distribution of air-assisted and airless urea injection systems were obtained by particle dynamics analyzer (PDA) measurement under different spray injection flow rates. It was found that the atomization quality of air-assisted urea injection system is better than that of airless urea injection system. The penetration and spray cone angle were also investigated by high-speed photography. Especially the spray characteristics of air-assisted urea injection system were measured in the constant-volume-bomb by high-speed photography. The atomization and evaporation of airless urea injection systems were modeled using computational fluid dynamics (CFD) based on the experimental results. The numerical model was validated by the experimental results.
Technical Paper

Design and Optimization of Multi-component Fuel for Fuel Concentration Measurement by Using Tracer PLIF in SI Engine

2010-04-12
2010-01-0344
A method to design a feasible multi-component fuel for fuel concentration measurements by using PLIF was developed based on thermal gravity (TG) analysis and vapor-liquid equilibrium (VLE) calculations. Acetone, toluene, and 1,2,4-trimethylbenzene were respectively chosen as tracers for the light, medium, and heavy components of gasoline. A five-component test fuel was designed for LIF measurement, which contains n -pentane (light), isooctane, n -octane (medium), n -nonane and n -decane (heavy). The TG analysis and VLE calculation were used to ensure that the fuel had volatility similar to real gasoline and that all the tracers had a good coevaporation ratio. The fully optimized results of the six-component fuel and the disadvantages of this case are discussed. The results indicated that optimization based on the six-component fuel, which included C4 compounds such as n -butane, controlled acetone's coevaporation ratio.
Technical Paper

Development of Closed-loop Control Strategy for Urea-SCR Based on NOX Sensors

2011-04-12
2011-01-1324
Selective catalytic reduction (SCR) is a promising technology for diesel aftertreatment used to reduce NOX emission effectively. SCR can be used to meet Euro - and even stricter emission standards. Dosing of urea must be controlled to lower NOX emission and NH₃ slip synchronously under the emission standard limits. A type of closed-loop control strategy based on NOX sensors for SCR system was presented in this paper. To detect NOX emissions, two NOX sensors were installed before and after the catalyst. Meanwhile, to examine the trade-off relationship between NOX emission and NH₃ slip, influences of different control parameters to the control purpose were explored. These influences include space velocity, catalyst temperament, NOX conversion efficiency, NH₃ adsorption and desorption characteristics, and so on. Results were used to optimize the dosing control strategy of urea. Base dosage of urea was confirmed based on the signals of NOX sensor.
Technical Paper

Development of Model Based Closed Loop Control Strategy of SCR System for Heavy-Duty Diesel Engines

2017-10-08
2017-01-2383
Urea selective catalytic reduction (SCR) is a key technology for heavy-duty diesel engines to meet the increasingly stringent nitric oxides (NOx) emission limits of regulations. The urea water solution injection control is critical for urea SCR systems to achieve high NOx conversion efficiency while keeping the ammonia (NH3) slip at a required level. In general, an open loop control strategy is sufficient for SCR systems to satisfy Euro IV and Euro V NOx emission limits. However, for Euro VI emission regulation, advanced control strategy is essential for SCR systems due to its more tightened NOx emission limit and more severe test procedure compared to Euro IV and Euro V. This work proposed an approach to achieve model based closed loop control for SCR systems to meet the Euro VI NOx emission limits. A chemical kinetic model of the SCR catalyst was established and validated to estimate the ammonia storage in the SCR catalyst.
Technical Paper

Development of Model Predictive Control Strategy of SCR System for Heavy-Duty Diesel Engines with a One-State Control-Oriented SCR Model

2018-09-10
2018-01-1763
Urea-based selective catalytic reduction (SCR) of nitric oxides (NOx) is a key technology for heavy-duty diesel engines to achieve the increasingly stringent NOx emission standards. The aqueous urea injection control is critical for urea-SCR systems in order to achieve high NOx conversion efficiency while restricting the tailpipe ammonia (NH3) slip. For Euro VI emission regulation, an advanced control strategy is essential for SCR systems since its NOx emission limits are tighter and test procedure are more stringent compared to Euro IV and Euro V. The complex chemical kinetics of the SCR process has motivated model-based control design approaches. However, the model is too complex to allow real-time implementation. Therefore, it is very important to have a reduced order model for SCR control system.
Technical Paper

Development of a Turbulence-induced Breakup Model for Gasoline Spray Simulation

2015-04-14
2015-01-0939
The design and optimization of a modern spray-guided gasoline direct injection engine require a thorough understanding of the fuel spray characteristics and atomization process. The fuel spray Computational Fluid Dynamics (CFD) modeling technology can be an effective means to study and predict spray characteristics, and as a consequence, to drastically reduce experimental work during the engine development process. For this reason, an accurate numerical simulation of the spray evolution process is imperative. Different models based on aerodynamically-induced breakup mechanism have been implemented to simulate spray atomization process in earlier studies, and the effect of turbulence from the injector nozzle is recently being concerned increasingly by engine researchers. In this study, a turbulence-induced primary breakup model coupled with aerodynamic instability is developed.
Technical Paper

Effect of Fuel Detergent on Injector Deposit Formation and Engine Emissions in a Gasoline Direct Injection (GDI) Engine

2017-10-08
2017-01-2247
Gasoline direct injection (GDI) engines have been developed rapidly in recent years, driven by stringent legislative requirements on vehicle fuel efficiency and emissions. However, one challenge facing GDI is the formation of particulate emissions, particularly with the presence of injector tip deposits. The Chinese market features some gasoline fuels that contain no detergent additives and are prone to deposit formation, which can affect engine performance and emissions. The use of detergent additives to mitigate the formation of injector deposits in a GDI engine was investigated in this study by testing a 1.5L turbocharged GDI engine available in the Chinese market. The engine was operated both on base gasoline and on gasoline dosed with detergent additives to evaluate the effect on injector deposit formation and engine performance and emissions.
Technical Paper

Effect of Single and Double-Deck Pre-Chamber Designs to the Combustion Characteristics of Premixed CH4 /Air

2018-09-10
2018-01-1688
An experiment was carried out to investigate the effect of single and double-deck pre-chamber on the combustion characteristics of premixed CH4/air in a constant volume vessel using schlieren method. A special design was proposed for the visualization of the pre-chamber. Combustion with different initial temperatures (300 K, 400 K, 500 K) were observed at stoichiometric ratio to lean-burn limit. Although single-deck pre-chamber has advantages over double-deck pre-chamber in both initial flame development duration and main combustion duration, the latter could extend the lean-burn limit by up to 0.3 and promote the stability of ignition. It is also found that extensive distribution of active species in main chamber before ignition can accelerate speed of flame propagation enormously.
Technical Paper

Effect of the Pre-Chamber Orifice Geometry on Ignition and Flame Propagation with a Natural Gas Spark Plug

2017-10-08
2017-01-2338
Natural gas is one of the promising alternative fuels due to the low cost, worldwide availability, high knock resistance and low carbon content. Ignition quality is a key factor influencing the combustion performance in natural gas engines. In this study, the effect of pre-chamber geometry on the ignition process and flame propagation was studied under varied initial mixture temperatures and equivalence ratios. The pre-chambers with orifices in different shapes (circular and slit) were investigated. Schlieren method was adopted to acquire the flame propagation. The results show that under the same cross-section area, the slit pre-chamber can accelerate the flame propagation in the early stages. In the most of the cases, the penetration length of the flame jet and flame area development are higher in the early stages of combustion.
Technical Paper

Effects of Aromatic and Olefin on the Formations of PAHs in GDI Engine

2017-10-08
2017-01-2390
In this paper, the impacts of Aromatic and Olefin on the formation of poly-aromatic hydrocarbons (PAHs) in the gasoline direct injection (GDI) engine were experimentally and numerically investigated. The objective of this study is to describe the formation process of the soot precursors including one ring to four ring aromatics (A1-A4). In order to better understand the effects of the fuel properties on the formations of PAHs. Three types of fuels, namely base gasoline, gasoline with higher aromatics content, and gasoline with higher olefin content were experimentally studied. At the same time, these aspects were also numerically investigated in the CHEMKIN code by using premixed laminar flame model and surrogated fuels. The results show that higher aromatics content in gasoline will lead to much higher PAHs formation. Similar trend was also found in the gasoline with higher olefin content.
Technical Paper

Effects of Fuel Quality on a Euro IV Diesel Engine with SCR After-Treatment

2008-04-14
2008-01-0638
Beijing will implement the 4th stage emission regulations (equivalent to Euro IV) in 2008 ahead of other provinces or cites in China. Beijing Environmental Protection Bureau (EPB) organized petroleum corporations, automobile and engine manufactories as well as research institutes to test the adaptability of the fuels from Chinese refineries to the modern vehicles or engines on the road running conditions in China. In this paper, the effects of diesel fuel quality on combustion and emission of a Euro IV heavy-duty diesel engine as one part of the program were studied to provide technical data to stipulate the feasible diesel fuel standard, which should guarantee modern vehicles or engines to meet the 4th stage regulations. Eight kinds of diesel fuels with different properties, such as cetane number, distillation temperature (T90) and sulfur content, were tested on a Euro IV Cummins heavy-duty diesel engine with urea SCR after-treatment.
Technical Paper

Effects of Spark Ignition and Stratified Charge on Gasoline HCCI Combustion With Direct Injection

2005-04-11
2005-01-0137
HCCI combustion was studied in a 4-stroke gasoline engine with a direct injection system. The electronically controlled two-stage gasoline injection and spark ignition system were adopted to control the mixture formation, ignition timing and combustion rate in HCCI engine. The engine could be operated in HCCI combustion mode in a range of load from 1 to 5 bar IMEP and operated in SI combustion mode up to load of 8 bar IMEP. The HCCI combustion characteristics were investigated under different A/F ratios, engine speeds, starts of injection, as well as spark ignition enabled or not. The test results reveal the HCCI combustion features as a high-pressure gradient after ignition and has advantages in high thermal efficiency and low NOx emissions over SI combustion. At the part load of 1400rpm and IMEP of 3.5bar, ISFC in HCCI mode is 25% lower and NOx emissions is 95% lower than that in SI mode.
Technical Paper

Experiment and Numerical Simulation of Unsteady Temperature Fields in Automotive Catalytic Converters

2001-09-24
2001-01-3563
This paper measured unsteady temperature fields of uncoated-monolith and catalytic monolith under real engine operating conditions using thermocouples. A multi-dimensional flow mathematical model of the turbulence, heat and mass transfer, and chemical reactions in monoliths was established using a computational fluid dynamics (CFD) code and numerically solved in the whole flow field of the catalytic converter. The purpose of this paper is to study unsteady warm-up characteristics of the monoliths and to investigate effects of inlet cone structure on temperature distribution of the catalytic converter. Experimental results show that the warm-up behaviors between uncoated-monolith and catalytic monolith are quite different. Simulation results indicate that the established model can qualitatively predict the warm-up characteristics.
Journal Article

Experimental Investigation of Different Blends of Diesel and Gasoline (Dieseline) in a CI Engine

2014-10-13
2014-01-2686
Combustion behaviour and emissions characteristics of different blending ratios of diesel and gasoline fuels (Dieseline) were investigated in a light-duty 4-cylinder compression-ignition (CI) engine operating on partially premixed compression ignition (PPCI) mode. Experiments show that increasing volatility and reducing cetane number of fuels can help promote PPCI and consequently reduce particulate matter (PM) emissions while oxides of nitrogen (NOx) emissions reduction depends on the engine load. Three different blends, 0% (G0), 20% (G20) and 50% (G50) of gasoline mixed with diesel by volume, were studied and results were compared to the diesel-baseline with the same combustion phasing for all experiments. Engine speed was fixed at 1800rpm, while the engine load was varied from 1.38 to 7.85 bar BMEP with the exhaust gas recirculation (EGR) application.
X