Refine Your Search

Topic

Search Results

Technical Paper

Experimental and Simulation Study of Zero Flow Impact on Hybrid Vehicle Emissions

2024-06-12
2024-37-0036
Combustion engines in hybrid vehicles turn on and off several times during a typical passenger car trip. Each engine restart may pose a risk of excessive tailpipe emissions in real-drive conditions if the after-treatment system fails to maintain an adequate temperature level during zero flow. In view of the tightening worldwide tailpipe emissions standards and real-world conformity requirements, it is important to detect and resolve such risks via cost-effective engineering tools relying on accurate 3d analysis of the thermal and chemical behavior of exhaust systems. In this work, we present a series of experiments to examine the impact of zero-flow duration on the exhaust system cooling and subsequent emissions risk. We also present a catalyst model calibrated to predict the 3d thermal and chemical behavior under normal and zero flow conditions. Particular emphasis is given to the phenomena of free convection and thermal radiation dominating the heat transfer at zero flow.
Technical Paper

Methane Conversion in Stoichiometric Natural Gas Engine Exhaust

2024-04-09
2024-01-2632
Stoichiometric natural gas (CNG) engines are an attractive solution for heavy-duty vehicles considering their inherent advantage in emitting lower CO2 emissions compared to their Diesel counterparts. Additionally, their aftertreatment system can be simpler and less costly as NOx reduction is handled simultaneously with CO/HC oxidation by a Three-Way Catalyst (TWC). The conversion of methane over a TWC shows a complex behavior, significantly different than non-methane hydrocarbons in stoichiometric gasoline engines. Its performance is maximized in a narrow A/F window and is strongly affected by the lean/rich cycling frequency. Experimental and simulation results indicate that lean-mode efficiency is governed by the palladium’s oxidation state while rich conversion is governed by the gradual formation of carbonaceous compounds which temporarily deactivate the active materials.
Technical Paper

Modeling the Impact of Thermal Management on Time and Space-Resolved Battery Degradation Rate

2024-04-09
2024-01-2675
The degradation rate of a Li-ion battery is a complex function of temperature and charge/discharge rates over its lifetime. There is obviously a keen interest in predictive electrochemical ageing models that account for known degradation mechanisms, primarily linked with the Solid Electrolyte Interface (SEI) formation and Li-plating, which are highly dependent on the cell temperature. Typically, such ageing models are formulated and employed at pack or cell level, neglecting intra-cell and cell-to-cell thermal and electrical non-uniformities. On the other hand, thermal management techniques can mitigate ageing by maintaining the battery pack within the desired temperature window either by cooling or heating. Inevitably, the cooling of the battery pack by conventional heat exchangers will introduce temperature non-uniformities that may in turn result in undesired intra-cell and/or cell-to-cell health non-uniformities.
Technical Paper

Multi-Dimensional Simulation of Battery Degradation during Fast-Charging with Active Thermal Management

2023-08-28
2023-24-0157
The degradation rate of Li-ion batteries and therefore their useful life depends on many parameters, including temperature, charge/discharge rates, the chemistry and microstructure of electrodes. The importance of understanding these mechanisms explains the large interest in developing predictive electrochemical ageing models accounting for the known deterioration mechanisms, mainly related to SEI layer formation and Li-plating. Usually, these ageing models are developed and applied at cell level assuming perfect uniformity in all dimensions apart from the through-plane direction. In this work, we extend the model to all dimensions within the cell to account for intra-cell non-uniformities in terms of local temperature and current. However, the temperature distribution of a cell within a battery pack depends on the interaction with its environment, which typically involves active cooling via an external fluid circulation within a channel network.
Technical Paper

Control Algorithms for xEV Powertrain Efficiency and Thermal Comfort

2023-08-28
2023-24-0142
This paper investigates how different on-board energy management system (EMS) algorithms can affect the total energy consumption considering propulsion, heating, ventilation, and air conditioning (HVAC) operation and thermal comfort requirements. Firstly, an integrated plug-in hybrid electric vehicle (PHEV) powertrain and HVAC model including vehicle cabin has been developed as a demonstrator. Two different EMS algorithms - namely a rule-based and an equivalent consumption minimization strategy (ECMS) one - are applied to the integrated PHEV model and evaluated under different environmental conditions. The results showed that the HVAC system operation affects the total energy consumption benefits when ECMS algorithm is used over the rule-based. ECMS reduces the total energy consumption by 2.5% compared to rule-based without HVAC operation, while the total energy consumption reduction changes to 5.3% and 6.3% when HVAC provides heating and cooling power respectively.
Technical Paper

Coupled Engine and After-Treatment Simulation for Fuel Efficient EU7 Technologies

2023-08-28
2023-24-0104
To achieve low tailpipe NOX emissions in Heavy-Duty engines, the rapid warm-up of the exhaust aftertreatment system (EAS) needs to be assisted by the adoption of new technologies to reduce engine-out emissions and increase the EAS conversion efficiency. Engine measures like cylinder deactivation, retarded start of the main injection, late intake valve closing, intake throttling and elevated idle speed can substantially increase the available exhaust gas enthalpy and temperature at the expense of additional fuel as has been shown in the literature. On the other hand, the exhaust system can be optimized in terms of hardware and controls, which is nowadays strongly supported by simulation. However, these simulation studies typically assume a fixed engine hardware and calibration and thus fixed engine-out simulation boundary conditions. Moving forward to tougher and real-world oriented legislation, the fixed cycle and engine-out boundary condition becomes insufficient.
Technical Paper

Reversible Sulfur Poisoning of 3-way Catalyst linked with Oxygen Storage Mechanisms

2021-09-05
2021-24-0069
Even though the 3-way catalyst chemistry has been studied extensively in the literature, some performance aspects of practical relevance have not been fully explained. It is believed that the Oxygen Storage Capacity function of 3-way catalytic components dominates the behavior during stoichiometry transitions from lean to rich mode and vice versa whereas a number of mathematical models have been proposed to describe the dynamics of pollutant conversion. Previous studies have suggested a strong impact of Sulfur on the pollutant conversion after a lean to rich transition, which has not been adequately explained and modelled. Lean to rich transitions are highly relevant to catalyst ‘purging’ needed after exposure to high O2 levels (e.g. after fuel cut-offs). This work presents engine test measurements with an engine-aged catalyst that highlight the negative impact of Sulfur on pollutant conversion after a lean to rich transition.
Technical Paper

Model-Based Comparison of Passive SCR Aftertreatment Systems for Electrified Diesel Applications

2020-06-30
2020-37-0023
The Diesel powertrain remains an important CO2 reduction technology in specific market segments due to its inherent thermodynamic combustion efficiency advantages. Diesel powertrain electrification can bring further potential for CO2 emissions reduction. However, the associated reduction in the exhaust gas temperature may negatively impact the performance of the exhaust aftertreatment (EAT) system and challenge the abatement of other emissions, especially NOx. Considering that active urea-SCR systems may be required to ensure compliance with the legislative limits, the total cost of the hybrid Diesel powertrain is expected to increase even more, therefore making it less commercially attractive. We present a model-based analysis of a Diesel hybrid electric vehicle (HEV) which is combined with an EAT system using Lean-NOx trap (LNT) technology.
Technical Paper

A Novel 1D Co-Simulation Framework for the Prediction of Tailpipe Emissions under Different IC Engine Operating Conditions

2019-09-09
2019-24-0147
The accurate prediction of pollutant emissions generated by IC engines is a key aspect to guarantee the respect of the emission regulation legislation. This paper describes the approach followed by the authors to achieve a strict numerical coupling of two different 1D modeling tools in a co-simulation environment, aiming at a reliable calculation of engine-out and tailpipe emissions. The main idea is to allow an accurate 1D simulation of the unsteady flows and wave motion inside the intake and exhaust systems, without resorting to an over-simplified geometrical discretization, and to rely on advanced thermodynamic combustion models and kinetic sub-models for the calculation of cylinder-out emissions. A specific fluid dynamic approach is then used to track the chemical composition along the exhaust duct-system, in order to evaluate the conversion efficiency of after-treatment devices, such as TWC, GPF, DPF, DOC, SCR and so on.
Technical Paper

Analysis of TWC Characteristics in a Euro6 Gasoline Light Duty Vehicle

2019-09-09
2019-24-0162
A Euro6 gasoline light duty vehicle has been tested at the engine dynamometer and the emissions have been analyzed upstream and downstream the Three-Way-Catalyst (TWC) during a WLTC cycle. Catalyst simulations have been used for assessing the processes inside the catalytic converter using a reaction scheme based on 19 brutto reactions (direct oxidation and reduction, selective catalytic reductions with CO, C3H6 and H2, steam reforming, water-gas shift and bulk ceria as well as surface ceria reactions). The reactions have been parameterized in order to best approximate the measurements. Based on the reactions taken into account, the real vehicle emissions can be predicted with good accuracy. The simulations show that the cycle emissions comprise mainly the cold start contribution as well as discrete emission break-through events during transients. During cold start no reactions are evident in the catalyst before the temperature of the gas entering the catalyst reaches 270°C.
Technical Paper

Heat Transfer Analysis of Catalytic Converters during Cold Starts

2019-09-09
2019-24-0163
The transient heat transfer behavior of an automotive catalytic converter has been simulated with OpenFOAM in 1D. The model takes into consideration the gas-solid convective heat transfer, axial wall conduction and heat capacity effects in the solid phase, but also the chemical reactions of CO oxidation, based on simplified Arrhenius and Langmuir-Hinshelwood approaches. The associated parameters are the results of data in literature tuned by experiments. Simplified cases of constant flow rates and gas temperatures in the catalyst inflow have been chosen for a comprehensive analysis of the heat and mass transfer phenomena. The impact of inlet flow temperatures and inlet flow rates on the heat up characteristics as well as in the CO emissions have been quantified. A dimensional analysis is proposed and dimensionless temperature difference and space-time coordinates are introduced.
Journal Article

Pressure Drop of Particulate Filters and Correlation with the Deposited Soot for Heavy-Duty Engines

2019-09-09
2019-24-0151
Particulate filters are a widely used emission control device on heavy-duty diesel engines. The accumulation of particulate matter, mostly consisting of soot, inside the filter results in increased filter pressure-drop (backpressure). This increased backpressure has been used by the on-board control systems as trigger for regeneration procedures, which aim to actively oxidize the accumulated soot. However, it is known that passive soot oxidation during normal operation affects the correlation between backpressure and the deposited soot mass in filter. Therefore, the backpressure alone cannot be a reliable trigger for regeneration. In this work we highlight operating conditions with very poor correlation between backpressure and accumulated soot mass in filter and evaluate the possible root causes. Experiments with several heavy-duty diesel engines and particulate filters were conducted on engine test bench.
Journal Article

Synergetic DOC-DPF System Optimization Using Advanced Models

2017-01-10
2017-26-0121
Modern ‘DOC-cDPF’ systems for diesel exhaust are employing Pt-, Pd- as well as Pt/Pd alloy- based coatings to ensure high conversion efficiency of CO, HC even at low temperatures. Depending on the target application, these coatings should be also optimized towards NO2 generation which is involved in low temperature soot oxidation as well as in SCR-based deNOx. Zeolite materials are also frequently used to control cold-start HC emissions. Considering the wide variety of vehicles, engines and emission targets, there is no single optimum coating technology. The main target is therefore to maximize synergies rather than to optimize single components. At the same time, the system designer has nowadays a wide range of technologies to choose from, including PGM alloyed combinations (Pt/Pd), multiple layers and zones applicable to both DOCs and DPFs.
Technical Paper

SCR System Optimization and Control Supported by Simulation Tools

2013-04-08
2013-01-1075
The successful design and especially the control of the SCR system is a challenging process that can be supported by the application of simulation tools. As a first step, we employ physico-chemically informed ‘off-line’ models that are calibrated with the help of targeted small- and full-scale tests. Despite their high level of sophistication, this SCR model is able to be integrated in a control-oriented simulation software platform and connected to other powertrain simulation blocks. The target is to use this simulation platform as a virtual environment for the development and optimization of SCR control strategies. The above process is demonstrated in the case of a passenger car SCR. The model is calibrated at both fresh and aged catalyst condition and validated using experimental data from the engine bench under a wide variety of operating conditions. Next, the calibrated model was coupled with embedded control models, developed for Euro 6 passenger car powertrains.
Technical Paper

Modeling the Interactions Of Soot and SCR Reactions in Advanced DPF Technologies with Non-homogeneous Wall Structure

2012-04-16
2012-01-1298
The pressure for compact and efficient deNO systems has led to increased interest of incorporating SCR coatings in the DPF walls. This technology could be very attractive especially if high amounts of washcoat loadings could be impregnated in the DPF porous walls, which is only possible with high porosity filters. To counterbalance the filtration and backpressure drawbacks from such high porosity applications, the layered wall technology has already been proposed towards minimizing soot penetration in the wall and maximizing filtration efficiency. In order to deal with the understanding of the complex interactions in such advanced systems and assist their design optimization, this paper presents an advanced modeling framework and selected results from simulation studies trying to illustrate the governing phenomena affecting deNO performance and passive DPF regeneration in the above combined systems.
Technical Paper

A Modeling Study of Soot and De-NOx Reaction Phenomena in SCRF Systems

2011-06-09
2011-37-0031
The development of thermally durable zeolite NH3/Urea-SCR formulations coupled with that of high porosity filters substrates has opened the way to integrate PM and NOx control into a single device, namely an SCR-coated Diesel Particulate Filter (SCRF). A few experimental works are already present in the literature regarding SCRF systems, mainly addressing the DeNOx performances of the system (in both presence and absence of soot) under both steady state and transient conditions. The purpose of the present work is to perform a simulation study focused on phenomena which are expected to play key roles in SCRF systems, such as coupling of reaction and diffusion phenomena, soot effect on DeNOx activity, SCR coating effect on soot regeneration and filtration efficiency and competition between soot oxidation and DeNOx processes involving NO2.
Journal Article

Calibration and Validation of a Diesel Oxidation Catalyst Model: from Synthetic Gas Testing to Driving Cycle Applications

2011-04-12
2011-01-1244
To meet future stringent emission regulations such as Euro6, the design and control of diesel exhaust after-treatment systems will become more complex in order to ensure their optimum operation over time. Moreover, because of the strong pressure for CO₂ emissions reduction, the average exhaust temperature is expected to decrease, posing significant challenges on exhaust after-treatment. Diesel Oxidation Catalysts (DOCs) are already widely used to reduce CO and hydrocarbons (HC) from diesel engine emissions. In addition, DOC is also used to control the NO₂/NOx ratio and to generate the exothermic reactions necessary for the thermal regeneration of Diesel Particulate Filter (DPF) and NOx Storage and Reduction catalysts (NSR). The expected temperature decrease of diesel exhaust will adversely affect the CO and unburned hydrocarbons (UHC) conversion efficiency of the catalysts. Therefore, the development cost for the design and control of new DOCs is increasing.
Journal Article

Implications of Engine Start-Stop on After-Treatment Operation

2011-04-12
2011-01-1243
It is commonly accepted that future powertrains will be based to a large extent on hybrid architectures, in order to optimize fuel efficiency and reduce CO₂ emissions. Hybrid operation is typically achieved with frequent engine start-and-stops during real-world as well as during the legislated driving cycles. The cooling of the exhaust system during engine stop may pose problems if the substrate temperature drops below the light-off temperature. Therefore, the design and thermal management of after-treatment systems for hybrid applications should consider the 3-dimensional heat transfer problem carefully. On the other hand, the after-treatment system calculation in the concept design phase is closely linked with engine calibration, taking into account the hybridization strategy. Therefore, there is a strong need to couple engine simulation with 3d aftertreatment predictions.
Technical Paper

Applications of Multi-layer Catalyst Modeling in deNOx and DPF Systems

2010-04-12
2010-01-0893
Due to the increasing pressure to develop small-size and low-cost after-treatment systems meeting the legislative demands it is desirable to integrate multiple functionalities and exploit any possible synergies. Typical examples include DPFs catalyzed with deNOx catalysts, as well as LNT-SCR combinations using layered coating technology. The present paper deals with the modeling challenges involved for the proper simulation of such advanced concepts. Key role in such advanced simulation attempts has the coupling between diffusion-reaction phenomena, which is captured through intra-layer modeling. All investigations in this paper deal with the application of possible combined LNT-SCR system configurations. The simulation results show that a dual bed LNT- passive SCR configuration offers substantial NOx emissions reductions compared to a single LNT catalyst and effectively controls secondary NH3 emissions produced during LNT regeneration phases.
Technical Paper

A Modeling and Experimental Investigation on an Innovative Substrate for DPF Applications

2010-04-12
2010-01-0891
XP-SiC is an innovative type of a porous substrate material on the basis of a reaction formed SiC for DPF applications. The high porosity, large pore size inside the cell wall and low specific weight are the special characteristics of this substrate. The aim of the current paper is to present an investigation based on the experimental and modeling approaches to evaluate the back pressure, filtration efficiency and the thermal durability. The latter one was assessed by measuring and predicting the temperature field, as well as calculating the thermal stresses. For this purpose the filter was modeled in the commercial computational code axitrap as a stand-alone tool, in which the conservation equations of mass continuity, momentum, energy and species were solved. The soot filtrations, loading as well as the regeneration by fuel-borne catalyst were modeled.
X