Refine Your Search

Search Results

Author:
Viewing 1 to 13 of 13
Technical Paper

Eddy-Resolving Simulation of Conjugate Heat Transfer in a Test Specimen pertinent to Cooling Channels in IC Engines

2024-04-09
2024-01-2692
The conjugate heat transfer, which effectively integrates the heat conduction within the solid metal block of the so-called Water Spider Geometry (WSG) configuration and the fluid domain within it, is computationally investigated in the present work, allowing an accurate representation of the temperature conditions at the solid-fluid interface. The WSG configuration represents a specially configured tube geometry that effectively reproduces the flow behavior observed in cooling channels associated with Internal Combustion (IC) engines. The inherent high flow unsteadiness potential of the WSG flow configuration, resulting from the complex flow guidance involving phenomena such as flow impingement, bifurcation, multiple deflections and flow confluence, requires the application of a model capable of capturing turbulence fluctuations.
Technical Paper

Influence of Wheel Wake on Vehicle Aerodynamics: An Eddy-Resolving Simulation Study

2023-04-11
2023-01-0842
A computational study of the vehicle aerodynamics influenced by the wake of the rotating wheel taking into account a detailed rim geometry is presently performed. The car configuration corresponds to a full-scale (1:1) notchback configuration of the well-known ‘DrivAer’ vehicle model, Heft et al. [1]. The objective of the present work is to investigate the performance of some popular turbulence models in conjunction with different methods for handling the wheel rotation – rotating wall velocity, ‘multiple reference frame’ and ‘sliding grid algorithm’. The specific focus hereby is on a near-wall RANS eddy-viscosity model based on elliptic-relaxation, sensitized to resolve fluctuating turbulence by introducing a specifically modeled production term in the scale-supplying equation, motivated by the Scale-Adaptive Simulation approach (SAS, [2]), proposed by Krumbein et al. [3].
Technical Paper

Computational Modeling of the Flow and Heat Transfer in an Internal Combustion Engine-Relevant Cooling Channel

2023-04-11
2023-01-0198
The “Water Spider Geometry” (WSG) configuration, representing a newly developed reference test sample designed to suitably investigate the flow and heat transfer processes relevant to cooling systems of internal combustion engines, was computationally investigated by applying a recently proposed Reynolds Stress model called the “Elliptic-Blending Model” (EBM). The WSG configuration resembles a specifically configured pipe geometry that appropriately mimics the flow phenomena encountered in cooling channels of realistic internal combustion engine, such as flow impingement and bifurcation, multiple deflections and flow confluence. The reference database, consisting of mean flow and turbulence fields, was provided by a Large-Eddy Simulation. The EBM formulation has been intensively validated by calculating numerous isothermal wall-bounded flows. The present work focuses on testing the EBM predictive performances under the conditions of non-isothermal flow scenarios.
Technical Paper

Structural Flow Properties in IC Engine-Relevant Piston-Cylinder Configurations: An Eddy-Resolving Modelling Study

2022-03-29
2022-01-0399
The feasibility of a recently developed eddy-resolving model of turbulence, termed as Very LES (Large-Eddy-Simulation), was tested by simulating the flow dynamics in two moving piston-cylinder assemblies. The first configuration deals with the compression of a tumbling vortex generated during the intake process within a cylinder with the square cross-sectional area, for which the reference experimental database was made available by Borée et al. (2002). The second piston-cylinder assembly represents a realistic motored IC-Engine (Internal-Combustion Engine) with the multiple Y-shaped intake and outtake ducts in which the movable valves are accommodated. The boundary and operating conditions correspond to the experimental study performed by Baum et al. (2014). The VLES simulation model applied presently is a seamless eddy-resolving hybrid RANS/LES (Reynolds-Averaged Navier-Stokes / Large-eddy Simulation) model.
Journal Article

LES-Predicted Flow Patterning in a Newly-Designed Reference Test Sample with Relevance to IC Engine-Related Cooling Channels

2022-03-29
2022-01-0394
A test sample configuration with a circular cross-section has been conceptualized to reproduce all geometrically relevant flow-guided elements - straight segments, deflections, bifurcations, impingement regions, confluence - as they can also be found in the cooling systems of realistic Internal Combustion (IC) engines. This newly-designed reference test sample is termed as Water Spider Geometry (WSG), with the shape inspired by the flow guidance around an IC engine cylinder head. Computational investigations are carried out within the framework of a BMWi (German Federal Ministry for Economic Affairs and Energy) project by applying a well-resolved, highly comprehensive Large Eddy Simulation aiming at providing a meaningful assessment of the isothermal flow topology within the WSG. The basis forms a fully-hexahedral, block-structured grid arrangement comprising 290 million cells with the results considered to be a reference solution for further investigations.
Technical Paper

Scale-Resolving Simulation of an ‘On-Road’ Overtaking Maneuver Involving Model Vehicles

2018-04-03
2018-01-0706
Aerodynamic properties of a BMW car model taking over a truck model are studied computationally by applying the scale-resolving PANS (Partially-averaged Navier-Stokes) approach. Both vehicles represent down-scaled (1:2.5), geometrically-similar models of realistic vehicle configurations for which on-road measurements have been performed by Schrefl (2008). The operating conditions of the modelled ‘on-road’ overtaking maneuver are determined by applying the dynamic similarity concept in terms of Reynolds number consistency. The simulated vehicle configuration constitutes of a non-moving truck model and a car model moving against the air flow, the velocity of which corresponds to the car velocity.
Journal Article

Improved RANS Computations of Flow over the 25°-Slant-Angle Ahmed Body

2017-03-28
2017-01-1523
The present work is concerned with the Steady RANS (Reynolds-Averaged Navier-Stokes) computations of inherently unsteady separating flow configurations. The focus is on the flow past the well-known Ahmed body (Ahmed et al., 1984), the rear slant angle of which corresponds to 25°. Unlike all (near-wall) RANS models, independent of modelling level, predicting a massive flow detachment occupying the entire slanted region, the present RANS model reproduces correctly the mean flow topology characterized by a thin separation bubble reattaching already at the slanted surface. It is achieved by intensifying appropriately the turbulence activity at the region of boundary layer separation by introducing an correspondingly formulated sink term (PΔU) into the relevant scale-supplying equation. The latter negative production term is modelled in terms of the second derivative of the mean velocity field (ΔU), as proposed originally by Rotta (1972).
Journal Article

Critical Assessment of Some Popular Scale-Resolving Turbulence Models for Vehicle Aerodynamics

2017-03-28
2017-01-1532
Some widely-used scale-resolving turbulence models are comparatively assessed in simulating the aerodynamic behavior of a full-scale AUDI-A1 car configuration. The presently considered hybrid RANS/LES (RANS – Reynolds-Averaged Navier-Stokes; LES – Large-Eddy Simulation) models include the well-known DDES (Delayed Detached-Eddy Simulation) scheme and two further variable-resolution formulations denoted by PANS (Partially-Averaged Navier-Stokes; Basara, 2011) and VLES (Very LES; Chang et al., 2014). Whereas the DDES method represents the originally proposed formulation based on the one-equation Spalart-Almaras model (Spalart et al. 2006), whose RANS/LES interface position is directly correlated to the underlying grid resolution, the other two models represent ‘true’ seamless formulations, providing a smooth transition from Unsteady RANS to LES in terms of a dynamic “resolution parameter” variation.
Technical Paper

Eddy-resolving Simulations of the Notchback ‘DrivAer’ Model: Influence of Underbody Geometry and Wheels Rotation on Aerodynamic Behaviour

2016-04-05
2016-01-1602
The present work deals with a computational study of a ‘DrivAer’ car model, the rear-end shape of which corresponds to the Notchback configuration (Heft et al. [1] and Heft [2]). The study investigates the effects of the underbody geometry and wheel rotation on the aerodynamic performance. The configurations with detailed and smooth underbody as well as with stationary and rotating wheels are considered. The computational model applied relies on a VLES (Very Large Eddy Simulation) formulation, Chang et al. [3]. The residual turbulence related to the VLES framework is presently modelled by a RANS-based (Reynolds-Averaged Navier-Stokes), four-equation (D(k,ɛ,ζ, f)/Dt) near-wall eddy-viscosity model, Hanjalic et al. [4].
Technical Paper

Surface Energy Influence on Supercooled Water Crystallization: A Computational Study

2015-06-15
2015-01-2115
Numerical experiments have been presently conducted aiming at studying the influence of the surface energy on the crystallization process of supercooled water in terms of the supercooling degrees. The mathematical model consists primarily of the equation governing the thermal energy field solved independently in both phases in accordance with the two-scalar approach by utilizing the Stefan condition at the interface to couple both temperature fields. The computational algorithm relying on the level-set method for solid-liquid interface capturing has been appropriately upgraded aiming at accuracy level increase with respect to the discretization of the thermal energy equation and the normal-to-interface derivative of the temperature field. The model describes the freezing mechanism under supercooled conditions, relying on the physical and mathematical description of the two-phase moving-boundary approach.
Journal Article

Computational Study of the Aerodynamics of a Realistic Car Model by Means of RANS and Hybrid RANS/LES Approaches

2014-04-01
2014-01-0594
The aerodynamic properties of a BMW car model, representing a 40%-scaled model of a relevant car configuration, are studied computationally by means of the Unsteady RANS (Reynolds-Averaged Navier-Stokes) and Hybrid RANS/LES (Large-Eddy Simulation) approaches. The reference database (geometry, operating parameters and surface pressure distribution) are adopted from an experimental investigation carried out in the wind tunnel of the BMW Group in Munich (Schrefl, 2008). The present computational study focuses on validation of some recently developed turbulence models for unsteady flow computations in conjunction with the universal wall treatment combining integration up to the wall and high Reynolds number wall functions in such complex flow situations. The turbulence model adopted in both Unsteady RANS and PANS (Partially-Averaged Navier Stokes) frameworks is the four-equation ζ − f formulation of Hanjalic et al. (2004) based on the Elliptic Relaxation Concept (Durbin, 1991).
Technical Paper

Experimental Investigations and Computations of Unsteady Flow Past a Real Car Using a Robust Elliptic Relaxation Closure with a Universal Wall Treatment

2007-04-16
2007-01-0104
In the present work we investigated experimentally and computationally the unsteady flow around a BMW car model including wheels*. This simulation yields mean flow and turbulence fields, enabling the study aerodynamic coefficients (drag and lift coefficients, three-dimensional/spatial wall-pressure distribution) as well as some unsteady flow phenomena in the car wake (analysis of the vortex shedding frequency). Comparisons with experimental findings are presented. The computational approach used is based on solving the complete transient Reynolds-Averaged Navier-Stokes (TRANS) equations. Special attention is devoted to turbulence modelling and the near-wall treatment of turbulence. The flow calculations were performed using a robust, eddy-viscosity-based ζ - ƒ turbulence model in the framework of the elliptic relaxation concept and in conjunction with the universal wall treatment, combining integration up to the wall and wall functions.
Technical Paper

Computational Study of Joint Effects of Shear, Compression and Swirl on Flow and Turbulence in a Valveless Piston-Cylinder Assembly

2001-03-05
2001-01-1236
The potential of single-point turbulence closure models for predicting the flow aerodynamics and turbulence in internal combustion engines (IC) was investigated by computational study of idealized valveless piston/cylinder configurations. The main flow cases considered are the swirling flow in a single stroke rapid compression machine (RCM) with flat and bowl-shaped cylinder head, as well as cyclic compression. Although still remote from a real engine, these configurations enable to analyse joint effects of major phenomena governing the aerodynamics in IC engines: shear, separation, swirl and compression/expansion. Prior to the computation of these engine-like flows, an extensive validation of applied turbulence models was performed in homogeneous and wall bounded shear flows, each featuring separately rotation, swirl and mean flow compression effects.
X