Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Deep Drawing by Indirect Hot Stamping

2013-04-08
2013-01-1172
Hot stamping or so-called continuous press hardening is a process to make sheet metal parts with yield-tensile strength up to 1150Mpa-1550Mpa. Due to the high specific ratio of quenched Boron steels, which is higher than those of aluminum alloys and magnesium alloys, the components with low mass can be made from hot stamped Boron steels. In current industrial practice, direct hot stamping process, which forms a part directly from a flat sheet blank, is normally used to make geometries with relatively mild deformation, such as B-pillars, A-pillars etc. In this study, indirect hot stamping is introduced to develop geometries with a deep cavity and complex form features. Since the indirect hot stamping develops the part cavity depth in cold drawing and then forms detail features in hot stamping, part with complex geometry can thus be formed. A rocker component is chosen to demonstrate the technology.
Journal Article

Robust Optimization of Drawbead Forces for a B-pillar Stamping

2009-04-20
2009-01-0980
Many uncertainties exist in the sheet metal stamping such as the variation of incoming material properties, die and press setup conditions, long-term tool wear and degradations. They are interacting in a way to make the process less robust, thus contributing to increased scrap rates and more unscheduled downtime. This paper presents a new approach for the die design optimization where these uncertainties are taken into account. A Tailor-Welded B-pillar consisting of 1.65mm DP600 and 0.9mm DDQ is selected as the focal part to demonstrate the new design process. The study is divided into two phases. The focus of the first phase is to understand the complexity of the formability window and determine effective optimization techniques under deterministic conditions. It is found that the formability window is highly nonlinear, or even discontinuous if a global objective function such as the Maximum Failure Factor is used.
Technical Paper

A Comprehensive Study of Door Slam

2004-03-08
2004-01-0161
As part of an ongoing technical collaboration between Ford and Rouge Steel Company, a comprehensive study of door slam event was undertaken. The experimental phase of the project involved measurements of accelerations at eight locations on the outer panel and strains on six locations of the inner panel. Although slam tests were conducted with window up and window down, results of only one test is presented in this paper. The CAE phase of the project involved the development of suitable “math” model of the door assembly and analysis methodology to capture the dynamics of the event. The predictability of the CAE method is examined through detailed comparison of accelerations and strains. While excellent agreement between CAE and test results of accelerations on the outer panel is obtained, the analysis predicts higher strains on the inner panel than the test. In addition, the tendency of outer panel to elastically buckle is examined.
Technical Paper

Grade and Gage Sensitivities to Oil-Canning Loads of a Door Assembly Considering Forming Effects

2004-03-08
2004-01-0164
A finite element methodology, based on implicit numerical integration procedure, for simulating oil-canning tests on Door assemblies is presented. The method takes into account nonlinearities due to geometry, material and contact between parts during deformation. The simulation results are compared with experimental observations. Excellent correlation between experimental observations and analytical predictions are obtained in these tests. Armed with the confidence in the methodology, simulations on a door assembly are conducted to study the gage and grade sensitivities of the outer panel. The sensitivity studies are conducted on three different grades of steel for the outer panel. Further studies are conducted to understand the effects of manufacturing (forming operation) on the oil canning behavior of door assembly. Results demonstrate the utility of the method in material selection during pre-program design of automotive structures.
Technical Paper

Validation of Non-linear Load-Controlled CAE Analyses of Oil-Canning Tests of Hood and Door Assemblies

2003-03-03
2003-01-0603
Two finite element methodologies for simulating oil-canning tests on closure assemblies are presented. Reflecting the experimental conditions, the simulation methodologies assume load-controlled situations. One methodology uses an implicit finite-element code, namely ABAQUS®, and the other uses an explicit code, LS-DYNA®. It is shown that load-displacement behavior predicted by both the implicit and explicit codes agree well with experimental observations of oil-canning in a hood assembly. The small residual dent depth predictions are in line with experimental observations. The method using the implicit code, however, yields lower residual dent depth than that using the explicit code. Because the absolute values of the residual dent depths are small in the cases examined, more work is needed, using examples involving larger residual dent depth, to clearly distinguish between the two procedures.
X