Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

A Comparison of Fuel-Cut Ageing during Retardation and Fuel-Cut during Acceleration

2014-04-01
2014-01-1504
The effect of various fuel-cut agings, on a Volvo Cars 4-cylinder gasoline engine, with bimetallic three-way catalysts (TWCs) was examined. Deactivation during retardation fuel-cut (low load) and acceleration fuel-cut (high load, e.g. gearshift or traction control) was compared to aging at λ=1. Three-way catalysts were aged on an engine bench comparing two fuel-cut strategies and their impact on of the life and performance of the catalysts. In greater detail, the catalytic activity, stability and selectivity were studied. Furthermore, the catalysts were thoroughly analyzed using light-off and oxygen storage capacity measurements. The emission conversion as a function of various lambda values and loads was also determined. Fresh and 40-hour aged samples showed that the acceleration fuel-cut was the strategy that had the highest contribution towards the total deactivation of the catalyst system.
Technical Paper

Fuel-Cut Based Rapid Aging of Commercial Three Way Catalysts - Influence of Fuel-Cut Frequency, Duration and Temperature on Catalyst Activity

2013-09-08
2013-24-0156
In order to quantify fuel-cut aging effects on commercial bimetallic Pd/Rh three-way catalysts (TWCs), supported on cerium-zirconium promoted alumina, full-size automotive catalysts were exposed to accelerated fuel-cut aging on an engine test bench, with a variation in temperature, fuel-cut frequency and fuel-cut duration. After aging, samples of the catalysts were tested in a laboratory environment for Light-off temperature (T50), Specific surface area (BET), Dispersion of noble metals and changes in the oxidation state of Pd and Rh. The catalytic tests showed clear deactivation of the aged samples and influence on the TWC's properties. The light off temperature and noble metal dispersion were found to be a clear function of oxygen exposure to the catalysts, i.e. fuel-cut frequency and duration, while the specific surface area was found to be a function of fuel-cut frequency. No changes in oxidation states of Pd and Rh could be detected.
Technical Paper

Pressure Drop of Monolithic Catalytic Converters Experiments and Modeling

2002-03-04
2002-01-1010
The pressure drop behavior of catalytic converters has been investigated for a number of different substrates, suitable for high performance IC-engines, regarding cell density, wall thickness and coating. The measurements have been performed on an experimental rig with room-air flow and hot-air flow. The data has been used to develop an empirical model for pressure drop in catalytic converters. The sources of pressure drop, such as viscous and inertial effects, have been separated in the model. The influence of turbulence on the pressure drop has been experimentally investigated. The model agrees well with experimental data and previous literature models and can be applied for 1D predictions as well as 3D CFD calculations.
Technical Paper

Methane and Nitric Oxide Conversion Over a Catalyst Dedicated for Natural Gas Vehicles

2000-10-16
2000-01-2928
Methane and nitric oxide conversion was studied over a Pd-based catalyst at steady state conditions. The gas mixture contained methane (0.125 %), Nitric oxide (0.125 %), carbon monoxide (0.7 %), oxygen and argon as carrier gas. The experiments were performed in a well-stirred reactor (Berty reactor) which provided constant gas composition over the catalyst. Lambda scans from λ=1.01 to 0.99 and back performed by varying the oxygen content, revealed a hysteresis in both the methane conversion and the nitric oxide conversion. The temperature and presence of nitric oxide affected the hysteresis. Complementary experiments in a synthetic exhaust gas rig revealed a more pronounced hysteresis in the presence of carbon dioxide and water. An attempt to model the hysteresis effect as a function of the palladium and palladium-oxide transformations was made.
X