Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Effect of Octane Number Obtained with Different Oxygenated Components on the Engine Performance and Emissions of a Small GDI Engine

2014-11-11
2014-32-0038
Great efforts have been paid to improve engine efficiency as well as to reduce the pollutant emissions. The direct injection allows to improve the engine efficiency; on the other hand, the GDI combustion produces larger particle emissions. The properties of fuels play an important role both on engine performance and pollutant emissions. In particular, great attention was paid to the octane number. Oxygenated compounds allow increasing gasoline's octane number and play an important role in PM emission reduction. In this study was analyzed the effect of fuels with different RON and with ethanol and ethers content. The analysis was performed on a small GDI engine. Two operating conditions, representative of the typical EUDC cycle, were investigated. Both the engine performance and the exhaust emissions were evaluated. The gaseous emissions and particle concentration were measured at the exhaust by means of conventional instruments.
Technical Paper

Kinetic Modeling of Knock Properties in Internal Combustion Engines

2006-10-16
2006-01-3239
This work presents a general model for the prediction of octane numbers and knock propensity of different fuels in SI engines. A detailed kinetic scheme of hydrocarbon oxidation is coupled with a two zone, 1-D thermo-fluid dynamic simulation code (GASDYN) [1]. The validation of the kinetic scheme is discussed on the basis of recent experimental measurements. CFR engine simulations for RON and MON evaluation are presented first to demonstrate the capabilities of the coupled model. The model is then used to compare the knock propensity of a gasoline “surrogate” (a pure hydrocarbon mixture) and PRFs in a current commercial engine, resulting in a simulation of “real world” octane number determination, such as Bench Octane Number (BON). The simulation results agree qualitatively with typical experimental trends.
X