Refine Your Search

Topic

Search Results

Author:
Technical Paper

Impact of the Injection Strategy on Soot Reactivity and Particle Properties of a GDI Engine

2020-04-14
2020-01-0392
The gradual global tightening of emission legislation for particulate matter emissions requires the development of new gasoline engine exhaust aftertreatment systems. For this reason, the development of gasoline direct injection engines aims at the reduction of particulate emissions by application of a Gasoline Particulate Filter (GPF). The regeneration temperature of GPF depend on soot reactivity towards oxidation and therefore on particle properties. In this study, the soot reactivity is correlated with nanostructural characteristics of primary gasoline particles as a function of specific engine injection parameters. The investigations on particle emissions were carried out on a turbocharged 4-cylinder GDI-engine that allows the variation of injection parameters. The emitted engine soot particles have been in-situ characterized towards their number and size distribution using an engine exhaust particle sizer (EEPS).
Journal Article

Formation of Engine Internal NO2: Measures to Control the NO2/NOX Ratio for Enhanced Exhaust After Treatment

2017-03-28
2017-01-1017
The proportion of nitrogen dioxide in the engine-out emissions of a Diesel engine is of great importance for the conversion of the total oxides of nitrogen (NOX) emissions in SCR catalysts. Particularly at lower engine loads and lower exhaust temperatures an increase of the already low NO2/NOX fraction will enhance the SCR operation significantly. For this purpose, the understanding of the NO2 formation during the Diesel combustion and expansion stroke is as substantial as being aware of the different thermodynamic impacts and engine operating parameters that affect the formation process. To determine the influences on the NO2 emission level several variation series were performed on a single-cylinder research engine. Especially the charge dilution parameters like the air-fuel ratio and the EGR rate as well as the injection parameters could be identified to be decisive for the NO2 formation.
Journal Article

Thermodynamic and Optical Investigations on Particle Emissions in a DISI Engine at Boosted Operation

2015-09-01
2015-01-1888
The subject of this paper is the reduction of the particle number emissions of a gasoline DI engine at high engine load (1.4 MPa IMEP). To reduce the particle number emissions, several parameters are investigated: the large scale charge motion (baseline configuration, tumble and swirl) can be varied at the single cylinder engine by using inlays in the intake port. The amount of residual gas can be influenced by the exhaust backpressure. By using a throttle valve, the exhaust backpressure can be set equal to the intake pressure and hence simulate a turbocharger's turbine in the exhaust system or the throttle valve can be wide open and thus simulate an engine using a supercharger. Additionally, higher fuel injection pressure can help to enhance mixture formation and thus decrease particulate formation. Therefore, a solenoid injector with a maximum pressure of 30 MPa is used in this work.
Journal Article

Investigations on the Heat Transfer in a Single Cylinder Research SI Engine with Gasoline Direct Injection

2015-04-14
2015-01-0782
In this work, heat loss was investigated in homogeneous and stratified DI-SI operation mode in a single cylinder research engine. Several thermocouples were adapted to the combustion chamber surfaces. The crank angle resolved temperature oscillations at the cylinder head and piston surface could thereby be measured in homogeneous and stratified operation mode. A grasshopper linkage was designed and adapted to the engine, to transfer the piston signals to the data acquisition device. The design of the experimental apparatus is described briefly. For both operation modes the average steady-state temperatures of the combustion chamber surfaces were compared. The temperature distribution along the individual sensor positions at the cylinder head and piston surface are shown. Furthermore, the curves of the crank angle resolved temperature oscillations in stratified and homogeneous operation mode were compared.
Journal Article

Soot and NOx Reduction by Spatially Separated Pilot Injection

2012-04-16
2012-01-1159
To this day, Diesel engines with direct injection are the most efficient internal combustion engines for passenger cars. The major challenge of these engines with a conventional Diesel combustion process is the high level of particulate matter and nitrogen oxide emissions. Diesel engines in passenger cars normally use a pilot injection strategy for NVH reasons, which influences the engine-out soot emissions negatively. The Diesel fuel of the pilot injection is still burning when the main injection takes place, so, liquid components of the main injection interact with the flame of the pilot injection. The time for mixture formation decreases and the combustion takes place under locally very rich conditions which results in high levels of soot formation. For this reason new emission level restrictions cannot be reached without modern exhaust gas aftertreatment systems, which are quite expensive and can have an impact on the gas exchange.
Technical Paper

Investigations of the Formation and Oxidation of Soot Inside a Direct Injection Spark Ignition Engine Using Advanced Laser-Techniques

2010-04-12
2010-01-0352
In this work the formation and oxidation of soot inside a direct injection spark ignition engine at different injection and ignition timing was investigated. In order to get two-dimensional data during the expansion stroke, the RAYLIX-technique was applied in the combustion chamber of an optical accessible single cylinder engine. This technique is a combination of Rayleigh-scattering, laser-induced incandescence (LII) and extinction which enables simultaneous measurements of temporally and spatially resolved soot concentration, mean particle radii and number densities. These first investigations show that the most important source for soot formation during combustion are pool fires, i.e. liquid fuel burning on the top of the piston. These pool fires were observed under almost all experimental conditions.
Journal Article

A New Model to Describe the Heat Transfer in HCCI Gasoline Engines

2009-04-20
2009-01-0129
In this work, heat loss was investigated in two different HCCI single cylinder engines. Thermocouples were adapted to the surfaces of the cylinder heads and the temperature oscillations were detected in a wide range of the engine operation maps. The resultant heat transfer profiles were compared to the heat losses predicted by existing models. As major discrepancies were stated, a new phenomenological model was developed that is well-manageable and describes the heat loss in HCCI mode more precisely than existing models. To analyze the insulating effect of deposits, the heat transfer equation was solved analytically by an approach that allows consideration of multiple layers with different material properties and thickness. This approach was used for the first time in conjunction with engines to calculate the heat flux at the surface of deposits and the deposit thickness.
Journal Article

Investigation of a New Injection Strategy for Simultaneous Soot and NOx Reduction in a Diesel Engine with Direct Injection

2008-06-23
2008-01-1790
An important source for soot formation during the combustion of diesel engines with direct injection is the interaction of liquid fuel or a very rich air/fuel-mixture with the flame. This effect appears especially in modern direct injection engines where the injection is often split in a pre- and a main injection due to noise reasons. After the ignition of the pre-injected fuel a part of the main injection can interact with the flame still in liquid phase as the fuel is injected straight towards the already burning cylinder areas. This leads to high amounts of soot. The injection strategy for this experimental study overcomes this problem by separating the injections spatially and therefore on the one hand reduces the soot formation during the early stages of the combustion and on the other hand increases the soot oxidation later during the combustion. In particular an injection configuration is used which gives the degree of freedom to modify the injection in the described manner.
Journal Article

Investigations on Supercharging Stratified Part Load in a Spray-Guided DI SI Engine

2008-04-14
2008-01-0143
Given the fact that, in an endeavor to achieve the goals of engineering for a trade-off between cleaning up exhaust emissions and maximizing fuel economy, two main paths are being followed in advancing and optimizing SI-engine operating strategy in the upper part-load range. On the one hand, homogenization and operation in the compression ignition mode seem to offer a promising means of minimizing NOx emission by keeping the combustion temperature below the formation borderline and accepting a high cylinder-pressure gradient to obtain benefits in fuel economy. On the other hand, there are ambitions to widen the range of stratified operation using a supercharger or turbocharger. This way, efficiency of the engine cycle can be improved by operating at a higher global air-fuel ratio and, with this, a higher polytropic exponent, thereby taking the efficiency chain to a higher level.
Technical Paper

Application of Particle Image Velocimetry for Investigation of Spray Characteristics of an Outward Opening Nozzle for Gasoline Direct Injection

2006-10-16
2006-01-3377
The hollow cone spray from a high pressure outward opening nozzle was investigated inside a pressure vessel by means of particle image velocimetry (PIV). The flow velocities of the air outside the spray were measured via PIV in combination with fluorescent seeding particles and optical filters. The high pressure piezo electric injector has an annular nozzle to provide a hollow cone spray with an angle of about 90°. During injection a very strong and stable vortex structure is induced by the fuel spray. Besides the general spray/air interaction, the investigation of double and triple fuel injections was the main focus of this study.
Technical Paper

A New Approach for Three-Dimensional High-Speed Combustion Diagnostics in Internal Combustion Engines

2006-10-16
2006-01-3315
This paper introduces a new measuring and analyzing method for the investigation of the spatial flame propagation in IC engines. Three optical high-speed measuring devices are connected and synchronized in order to detect the flame radiation from different perspectives via fiberoptical endoscopes. The resulting two-dimensional images provide a starting basis for the subsequent reconstruction of the three-dimensional flame geometry. The reconstruction is carried out by a newly developed software tool. The capability of the new methodology has been proven in a first test series. A one-cylinder SI engine with direct-injection is operated in both homogeneous and spray-guided stratified injection mode. Intake flow conditions and air/fuel ratio are varied in order to investigate the effects on flame spread. The volumetric flame developments are analyzed as well as the location of the combustion center in absolute coordinates.
Technical Paper

Development and Testing of a Diesel Particulate Filter with an Electrical Regeneration Starting Module

2005-10-24
2005-01-3703
Different particulate filter systems with an electrical heating for starting the filter regeneration were designed and tested to evaluate the parameters important for a successful filter and heating device layout. These results led to a new filter system with an improved electrical heating module. Particular emphasis was put on a modular design which allows a separate optimization of the different system parts with regard to function, durability and costs. In this paper the different development steps are presented. Experimental results show the performance and limitations for electrically heated particulate traps. The analysis of the experiments was done on the one hand by using data such as temperatures, pressures and exhaust gas composition during the regeneration. On the other hand the assessment of the regeneration rate was done by weighing the filter and optically with non-destructive and partly destructive methods.
Technical Paper

A New Flame Jet Concept to Improve the Inflammation of Lean Burn Mixtures in SI Engines

2005-10-24
2005-01-3688
Engines with gasoline direct injection promise an increase in efficiency mainly due to the overall lean mixture and reduced pumping losses at part load. But the near stoichiometric combustion of the stratified mixture with high combustion temperature leads to high NOx emissions. The need for expensive lean NOx catalysts in combination with complex operation strategies may reduce the advantages in efficiency significantly. The Bowl-Prechamber-Ignition (BPI) concept with flame jet ignition was developed to ignite premixed lean mixtures in DISI engines. The mainly homogeneous lean mixture leads to low combustion temperatures and subsequently to low NOx emissions. By additional EGR a further reduction of the combustion temperature is achievable. The BPI concept is realized by a prechamber spark plug and a piston bowl. The main feature of the concept is its dual injection strategy.
Technical Paper

A Basic Experimental Study of Gasoline Direct Injection at Significantly High Injection Pressures

2005-04-11
2005-01-0098
In gasoline direct injection engines with stratified-combustion strategies only a short time is available for mixture preparation. Therefore, investigations are carried out to evaluate the influence of high injection pressure up to 50 MPa in order to optimize the mixture preparation. Two types of multi-hole injectors are analyzed in a pressure vessel under various pressure and temperature conditions. Laser light sheet visualization technique is applied in order to determine spray characteristics like shape, angle, penetration depth and spray width. To determine the velocity of the air surrounding the spray, a PIV (Particle Image Velocimetry) measurement technique is used. Droplet sizes and velocities are measured with a Phase Doppler Anemometer (PDA) in different positions in the spray center and at the spray edge. Spray visualization experiments show the influence of evaporation on spray propagation at higher temperatures.
Technical Paper

Turbulent Flame Propagation with Cold Walls during Lean Combustion in SI-Engines

2005-04-11
2005-01-0238
The main objectives of this investigation are the visualisation of the flame propagation depending on different boundary conditions. Turbulence intensities, wall-temperatures and an air-fuel ratios were varied in a wide range. For the experiments a rapid compression machine with a quadratic piston and a good optical access is used which allows to observe the entire burning. With an additionally integrated turbulence generator it is possible to create a defined turbulence field in the burning chamber.
Technical Paper

Ion Current Measurement in Diesel Engines

2004-10-25
2004-01-2922
Contemporary diesel engines are high-tech power plants that provide high torques at very good levels of efficiency. By means of modern injecting-systems such as Common-Rail Injection, combustion noise and emissions could be influenced positively as well. Diesel engine are therefore used increasingly in top-range and sports cars. Today's production ECUs have no or only very low feedback regarding the process in the combustion chamber. As long as this data is missing, the design of the maps in the ECU can only be a compromise, since production tolerances and aging processes have to be considered in advance. Disturbances in the combustion process may not be detected at all. If more knowledge about the course of combustion is provided, especially the start of combustion (SOC), various operating parameters, such as the pilot injection quantity or the beginning of current feed to the injector, could be adjusted more precisely and individually for every cylinder.
Technical Paper

Measurement of the Equivalence Ratio in the Spark Gap Region of a Gasoline Direct Injection Engine With Spark Emission Spectroscopy and Tracer-LIF

2004-06-08
2004-01-1916
The complexity of the mixture formation in direct injection engines requires - according to a suitable mixture transportation and vaporization of the fuel - detailed knowledge of the in-cylinder processes to reliably place an ignitable mixture at ignition timing near the spark plug for any speed and load. Two different optical measurement techniques were adapted to a single cylinder engine and the spray propagation was observed from the start of injection until ignition. 3-pentanone tracer-LIF signals (laser-induced fluorescence) and CN spark emission signals were detected simultaneously in order to get information about the local equivalence ratio at the spark plug and compare the two methods. While there is a good correlation for homogeneous operating conditions of the engine, the results diverge in the stratified mode.
Technical Paper

The BPI Flame Jet Concept to Improve the Inflammation of Lean Burn Mixtures in Spark Ignited Engines

2004-03-08
2004-01-0035
Spark ignited engines with direct injection (DISI) in fuel stratified mode promise an increase in efficiency mainly due to reduced pumping losses at part load. However, the need for expensive lean NOx catalysts may reduce this advantage. Therefore, a Bowl-Prechamber-Ignition (BPI) concept with flame jet ignition was developed to ignite premixed lean mixtures in DISI engines. It is characterised by a combination of a prechamber spark plug and a piston bowl. An important feature of the concept is its dual injection strategy. A pre injection in the inlet stroke produces a homogeneous lean mixture with an air fuel ratio of λ = 1.5 to λ = 1.7. A second injection with a small quantity of fuel is directed towards the piston bowl during the compression stroke. The enriched air fuel mixture of the piston bowl is transported by the pressure difference between main combustion chamber and prechamber into the prechamber.
Technical Paper

Investigation of Cycle-to-Cycle Variations of In-Cylinder Processes in Gasoline Direct Injection Engines Operating With Variable Tumble Systems

2004-03-08
2004-01-0044
To operate gasoline direct injection engines at part load and in stratified mode the mixture formation has to fulfil several requirements. The complexity of this process requires - regarding a suitable mixture transportation and vaporisation of the fuel - an adjusted design of the combustion chamber and the intake ports to reliably place an ignitable mixture at ignition timing near the spark plug at any speed and load. Due to the inhomogeneous mixture distribution during stratified operation, the first combustion period is very sensitive to cycle-to-cycle variations. A reproducible mixture movement with high kinetic energy is necessary for stable engine operation with low fluctuations in the combustion process. Because of the high relevance of these facts, the effects of an adjustable air guiding system in the inlet manifold on in-cylinder flow, ignition and combustion using optical measurement techniques were investigated.
Technical Paper

Particulate Trap Technology for Light Duty Vehicles with a New Regeneration Strategy

2000-06-19
2000-01-1924
A particulate trap with combined regeneration has been developed for use in light duty vehicles with diesel engines. This new system was tested first on an engine test rig. On-road vehicle tests are going on since August 1998. The results obtained clearly demonstrate the feasibility of this system. With this system trap regeneration has to be ensured under worst case conditions (exhaust gas temperature<400° C). To meet this requirement electrical heating in combination with a fuel-borne catalyst is applied. Different filter materials such as cordierite wall flow and silicon carbide monoliths were tested on the engine test rig. The paper reports on results from the engine test rig as well as from on-road vehicle testing. An overview about pre-heating and regeneration examples are given and energy balances are presented.
X