Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Journal Article

Cylinder Deactivation with Mechanically Fully Variable Valve Train

2012-04-16
2012-01-0160
The targets for future gasoline engines in terms of fuel consumption and exhaust gas emissions require the introduction of advanced technologies to increase engine efficiency. The mechanically fully-variable valve train system UniValve is an effective device to reduce fuel consumption through throttle-free load control. This is achieved by the simultaneous variation of valve lift and valve opening event. The method of cylinder deactivation by closing the gas exchange valves is a further approach to increase the efficiency of combustion engines especially at part load. This paper presents the combination of both techniques on a downsized, turbo charged 4-cylinder DI gasoline engine. The mechanical integration of the valve shut-off capability for cylinder deactivation into the Univalve system is explained and strategies for the transition between 2-cylinder and 4-cylinder modus are discussed.
Technical Paper

Experimental Approach to Optimize Catalyst Flow Uniformity

2000-03-06
2000-01-0865
A uniform flow distribution at converter inlet is one of the fundamental requirements to meet high catalytic efficiency. Commonly used tools for optimization of the inlet flow distribution are flow measurements as well as CFD analysis. This paper puts emphasis on the experimental procedures and results. The interaction of flow measurements and CFD is outlined. The exhaust gas flow is transient, compressible and hot, making in-situ flow measurements very complex. On the other hand, to utilize the advantages of flow testing at steady-state and cold conditions the significance of these results has to be verified first. CFD analysis under different boundary conditions prove that - in a first approach - the flow situation can be regarded as a sequence of successive, steady-state situations. Using the Reynolds analogy a formula for the steady-state, cold test mass flow is derived, taking into account the cylinder displacement and the rated speed.
X