Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Acoustic Noise Assessment of Gasoline Direct Injection Fuel Injectors Using Taguchi Methods

2011-04-12
2011-01-1216
Gasoline Direct injection (GDi) systems offer performance and /or fuel consumption advantages compared to the traditional lower pressure port fuel injected technology. One disadvantage of GDi is the higher level of audible noise produced by the high pressure GDi system components. Powertrain noise is a known warranty complaint across the automotive industry. This paper presents an objective comparison of acoustic noise emitted by eight solenoid actuated fuel injector designs during their normal operation, including at engine idle, where powertrain noise is more noticeable to the customer. Taguchi Robust Engineering methods will be used to conduct an assessment of the noise generated by various GDi fuel injector designs. Injector fixturing, measurement procedures, and their impact on reducing test-to-test measurement variation are discussed.
Technical Paper

Acoustic Noise Assessment of Gasoline Direct Injection (GDi) Components Using Taguchi Methods - Application to GDi High-Pressure Pumps

2010-04-12
2010-01-0586
Gasoline Direct Injection (GDi) system is a relatively new technology. In early implementations, its major components, i.e. high pressure fuel pump, injectors, and fuel rails, emit objectionable acoustic noise during normal operation. This paper will focus on making an objective comparison (assessment) of acoustic noise emitted by several cam-driven high pressure fuel pumps during their normal operation, especially at engine idle. Taguchi robust engineering methods will be used to conduct the robust assessment study of six GDi high-pressure pumps. A-weighted total sound pressure level (SPL), processed from two free-field microphones around each pump, will be used as the main function in the Taguchi design of experiments (DOE).
X