Refine Your Search

Search Results

Author:
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

A Study of Mixture Formation in Direct Injection Diesel Like Conditions Using Quantitative Fuel Concentration Visualizations in a Gaseous Fuel Jet

2002-05-06
2002-01-1632
Quantitative fuel concentration visualizations are carried out to study the mixing process between fuel and air in Direct Injection (DI) Diesel like conditions, and generate high quality data for the validation of mixing models. In order to avoid the particular complication connected with fuel droplets, a gaseous fuel jet is investigated. Measurements are performed in a high-pressure chamber that can provide conditions similar to those in a diesel engine. A gas injection system able to perform injections in a high-pressure chamber with a good control of the boundary conditions is chosen and characterized. Mass flow rates typical of DI Diesel injection are reproduced. A Laser Induced Fluorescence technique requiring the mixing at high pressure of the fluorescent tracer, biacetyl, with the gaseous fuel, methane, is developed. This experimental technique is able to provide quantitative measurement of fuel concentration in high-pressure jets.
Journal Article

Air Entrainment in Diesel-Like Gas Jet by Simultaneous Flow Velocity and Fuel Concentration Measurements, Comparison of Free and Wall Impinging Jet Configurations

2011-08-30
2011-01-1828
The air entrainment process of diesel-like gas jet was studied by simultaneous measurements of concentration and velocity fields. A high pressure gas jet was used to simulate diesel injection conditions. The injection mass flow rate was similar to that of typical diesel injection. The experiments were performed in a high pressure vessel at typical ambient gas density of diesel engine during spray injection. The ambient gas density was varied from 25 to 30 kg/m₃ and three nozzle diameters, 0.2, 0.35 and 0.5 mm were used. Both free and wall-impinging jet configurations were investigated by combining Laser-Induced Fluorescence (LIF) and Particle Image Velocimetry (PIV) to obtain simultaneous planar measurements of concentration and velocity. Fuel concentration fields were used to define the edges of the jet and allow an accurate determination of the air entrainment rate both in free and wall-impinging configurations.
Journal Article

Automated Detection of Primary Particles from Transmission Electron Microscope (TEM) Images of Soot Aggregates in Diesel Engine Environments

2015-09-01
2015-01-1991
The major challenge of the post-processing of soot aggregates in transmission electron microscope (TEM) images is the detection of soot primary particles that have no clear boundaries, vary in size within the fractal aggregates, and often overlap with each other. In this study, we propose an automated detection code for primary particles implementing the Canny Edge Detection (CED) and Circular Hough Transform (CHT) on pre-processed TEM images for particle edge enhancement using unsharp filtering as well as image inversion and self-subtraction. The particle detection code is tested for soot TEM images obtained at various ambient and injection conditions, and from five different combustion facilities including three constant-volume combustion chambers and two diesel engines.
Journal Article

Characterization of a Set of ECN Spray A Injectors: Nozzle to Nozzle Variations and Effect on Spray Characteristics

2013-09-08
2013-24-0037
The Engine Combustion Network (ECN) is becoming a leading group concerning the experimental and computational analysis of Engine combustion. In order to establish a coherent database for model validation, all the institutions participating to the experimental effort carry out experiments at well-defined standard conditions (in particular at Spray A conditions: 22.8kg/m3, 900K, 0% and 15% O2) and with Diesel injectors having the same specifications. Due to the rising number of ECN participants and also to unavoidable damages, additional injectors are required. This raises the question of injector's characteristics reproducibility and of the appropriate method to introduce such new injectors in the ECN network. In order to investigate this issue, a set of 8 new injectors with identical nominal Spray A specification were purchased and 4 of them were characterized using ECN standard diagnostics.
Journal Article

Comparison of Diesel Spray Combustion in Different High-Temperature, High-Pressure Facilities

2010-10-25
2010-01-2106
Diesel spray experimentation at controlled high-temperature and high-pressure conditions is intended to provide a more fundamental understanding of diesel combustion than can be achieved in engine experiments. This level of understanding is needed to develop the high-fidelity multi-scale CFD models that will be used to optimize future engine designs. Several spray chamber facilities capable of high-temperature, high-pressure conditions typical of engine combustion have been developed, but because of the uniqueness of each facility, there are uncertainties about their operation. For this paper, we describe results from comparative studies using constant-volume vessels at Sandia National Laboratories and IFP.
Technical Paper

Experimental Methodology for the Understanding of Soot-Fuel Relationship in Diesel Combustion: Fuel Characterization and Surrogate Validation

2017-03-28
2017-01-0721
This paper is a contribution to the understanding of the formation and oxidation of soot in Diesel combustion. An ECN spray A injector (single axial-oriented orifice) was tested in a well characterized high-temperature/high-pressure vessel at engine relevant conditions. The size of the test section (>70mm) enables to study the soot formation process in nearly free field conditions, which constitutes an ideal feature for fundamental understanding and model validation. Simultaneous high-speed OH* chemiluminescence imaging and high-speed 2D extinction were performed to link together the information regarding flame chemistry (i.e. lift-off length) and the soot data. The experiments were carried out for a set of fuels with different CN and sooting index (Diesel fuel, Jet fuel, gasoline and n-dodecane) performing parametric variations in the test conditions (ambient temperature and oxygen concentration).
Technical Paper

Extension of Lagrangian-Eulerian Spray Modeling: Application to High Pressure Evaporating Diesel Sprays

2000-06-19
2000-01-1893
The Lagrangian-Eulerian approach is commonly used to simulate engine sprays. However typical spray computations are strongly mesh dependent. This is explained by an inadequate space resolution of the strong velocity and vapor concentration gradients. In Diesel sprays for instance, the Eulerian field is not properly computed close to the nozzle exit in the vicinity of the liquid phase. This causes an overestimated diffusion that leads to inaccuracies in the modeling of fuel-air mixing. By now it is not possible to enhance grid resolution since it would violate requested assumptions for the Lagrangian liquid phase description. Besides, a full Eulerian approach with an adapted mesh is not practical at the moment mainly because of prohibitive computer requirements. Keeping the Lagrangian-Eulerian approach, a new methodology is introduced: the full Lagrangian-Eulerian Coupling (CLE).
Journal Article

Formation of Unburned Hydrocarbons in Low Temperature Diesel Combustion

2009-11-02
2009-01-2729
Low temperature combustion is a promising way to reach low NOx emissions in Diesel engines but one of its drawbacks, in comparison to conventional Diesel combustion is the drastic increase of Unburned Hydrocarbons (UHC). In this study, the sources of UHC of a low temperature combustion system were investigated in both a standard, all-metal single-cylinder Diesel engine and an equivalent optically-accessible engine. The investigations were conducted under low load operating conditions (2 and 4 bar IMEP). Two piston bowl geometries were tested: a wall-guided and a more conventional Diesel chamber geometry. Engine parameters such as the start of injection (SOI) timing, the level of charge dilution via exhaust gas re-circulation (EGR), intake temperature, injection pressure and engine coolant temperature were varied. Furthermore, the level of swirl and the diameter of the injector nozzle holes were also varied in order to determine and quantify the sources of UHC.
Technical Paper

Gasoline Injection and Spray Combustion in a Cell with Conditions Typical of Direct Injection Engines

2003-10-27
2003-01-3108
Penetration and combustion of fuel sprays is studied in conditions similar to gasoline direct injection engines. A closed pressurized and heated injection cell is used. It is equipped with quartz windows providing large optical accesses. A homogeneous flammable mixture is introduced in the cell and ignited to raise the internal pressure and temperature. Liquid fuel is injected at the time when the desired thermodynamic conditions are reached. Conditions representative of late injection in a direct-injection engine are selected. Gasoline spray ignition and combustion is provided by a spark plug with long electrodes, locating the electrode gap right in the middle of the spray. The combustion does not reach the wall, which makes this experiment interesting for the validation of combustion in CFD codes. Two pressure swirl injectors with spray angles of 60 and 90 degree are used. The fuel is iso-octane with 5% 3-pentanone as tracer.
Technical Paper

High Pressure Diesel Spray and Combustion Visualization in a Transparent Model Diesel Engine

1999-10-25
1999-01-3648
A database of information concerning the spray development and pollutant formation in common-rail, direct-injection Diesel engine is constructed using a transparent model Diesel engine. Spray development is investigated using optical diagnostics: Mie scattering and Laser Induced Exciplex Fluorescence (LIEF) make possible qualitative visualization of liquid and vapor phases. The injection pressure/nozzle hole diameter is found to be the most important parameter (in the parameter range used for the study): it reduces the liquid penetration length and improves the mixing of vapor fuel. Direct imaging of combustion development shows the influence of different engine parameters on flame location. Comparison with measured vapor distributions shows the effect of thermal expansion on the vapor plume before any light from combustion is visible. Soot formation is investigated using Laser Induced Incandescence imaging.
Technical Paper

Identifying the Driving Processes of Diesel Spray Injection through Mixture Fraction and Velocity Field Measurements at ECN Spray A

2020-04-14
2020-01-0831
Diesel spray mixture formation is investigated at target conditions using multiple diagnostics and laboratories. High-speed Particle Image Velocimetry (PIV) is used to measure the velocity field inside and outside the jet simultaneously with a new frame straddling synchronization scheme. The PIV measurements are carried out in the Engine Combustion Network Spray A target conditions, enabling direct comparisons with mixture fraction measurements previously performed in the same conditions, and forming a unique database at diesel conditions. A 1D spray model, based upon mass and momentum exchange between axial control volumes and near-Gaussian velocity and mixture fraction profiles is evaluated against the data.
Technical Paper

Investigation of the Mixing Process and the Fuel Mass Concentration Fields for a Gasoline Direct-Injection Spray at ECN Spray G Conditions and Variants

2015-09-01
2015-01-1902
Within the Engine Combustion Network (ECN) research frame, the mixing process and the fuel mass concentration fields were investigated at spray G conditions and variants with optical diagnostics. Experiments were conducted in a high-temperature high-pressure constant-volume pre-combustion vessel. The target condition, called “Spray G”, which is representative of gasoline direct-injection engine conditions, uses well-defined ambient (573 K, 6 bar, 3.5 kg/m3, O2-free) and injector conditions (200 bar, eight-hole injector, 0.165 mm orifice diameter). Measurements were also conducted at 6 and 9 kg/m3 for temperatures of 700 and 800 K respectively. Two techniques were used to visualize the jet formation: p-difluorobenzene laser induced fluorescence (LIF) imaging and high-repetition-rate schlieren visualization. Images from both methods were compared in terms of jet penetration and size.
Technical Paper

Mixing Process in High Pressure Diesel Jets by Normalized Laser Induced Exciplex Fluorescence Part I: Free Jet

2005-05-11
2005-01-2100
The mixing process of High Pressure Diesel jets is studied using normalized laser induced exciplex fluorescence (LIEF). A single hole common rail Diesel injector is used which allows high injection pressures up to 200MPa. The spray is observed in a high pressure, high temperature cell that reproduces the thermodynamic conditions which exist in the combustion chamber of a Diesel engine during injection. A LIEF technique is combined to a normalization method in order to obtain fuel vapor concentration fields. A detailed statistical analysis is then used to describe the jet mixing process. Mixing is strong in the stationary zone, located upstream, while it is much weaker at the tip of the jet. The effect of varying the injection parameters has also been investigated. In particular, it has been shown that the local mixing rate in the stationary zone remains constant despite an increase in the injection pressure.
Technical Paper

Mixing Process in High Pressure Diesel Jets by Normalized Laser Induced Exciplex Fluorescence Part II: Wall Impinging Versus Free Jet

2005-05-11
2005-01-2097
The effect of perpendicular jet wall impingement on the mixing process of high pressure Diesel jets is studied using normalized laser induced exciplex fluorescence (LIEF). A single hole common rail Diesel injector is used which allows high injection pressures up to 200MPa. Visualisations of the jet were performed in a high pressure, high temperature cell that reproduces the thermodynamic conditions which exist in the combustion chamber of a Diesel engine during injection. A LIEF technique is combined to a normalization method in order to obtain fuel vapor concentration fields. The jet-wall interaction configuration is compared to a free jet configuration at identical operating conditions in order to provide detailed information on the influence of wall impingement and its effects on the subsequent mixing process.
Technical Paper

Mixture Preparation and Combustion via LIEF and LIF of Combustion Radicals in a Direct-Injection, HCCI Diesel Engine

2004-10-25
2004-01-2945
The influence of piston geometry on the in-cylinder mixture distribution and combustion process in an optically-accessible, direct injection HCCI Diesel engine has been investigated. A new, purpose-designed piston which allows optical access directly into the combustion chamber bowl permitted the application of a number of optical diagnostic techniques. Firstly, laser-induced exciplex fluorescence (LIEF) has been applied in order to characterize the fuel spray and vapor development within the piston bowl. Subsequently a detailed study of the auto-ignition and two-stage Diesel HCCI combustion process has been conducted by a combination of direct chemiluminescence imaging, laser-induced fluorescence (LIF) of the intermediate species formaldehyde (CH2O) which is present during the cool flame and LIF of the OH radical later present in the reaction and burned gas zones at higher temperature.
Technical Paper

On the origin of Unburned Hydrocarbon Emissions in a Wall Guided, Low NOx Diesel Combustion System

2007-07-23
2007-01-1836
The formation mechanisms of unburned hydrocarbons (HC) in low NOx, homogeneous type Diesel combustion have been investigated in both standard and optical access single cylinder engines operating under low load (2 and 4 bar IMEP) conditions. In the standard (i.e. non-optical) engine, parameters such as injection timing, intake temperature and global equivalence ratio were varied in order to analyse the role of bulk quenching on HC emissions formation. Laser-induced fluorescence (LIF) imaging of in-cylinder unburned HC within the bulk gases was performed on the optical-access engine. Furthermore, studies were performed in order to ascertain whether the piston top-land crevice volume contributes significantly to engine-out HC emissions. Finally, the role of piston-top fuel films and their impact on HC emissions was studied. This was investigated on the all-metal engine using two fuels of different volatilities.
Journal Article

Optical Investigation of Sooting Propensity of n-Dodecane Pilot/Lean-Premixed Methane Dual-Fuel Combustion in a Rapid Compression-Expansion Machine

2018-04-03
2018-01-0258
The sooting propensity of dual-fuel combustion with n-dodecane pilot injection in a lean-premixed methane-air charge has been investigated using an optically accessible Rapid Compression-Expansion Machine (RCEM) to achieve engine-relevant pressure and temperature conditions at the start of pilot injection. A Diesel injector with a 100 μm single-hole coaxial nozzle, mounted at the cylinder periphery, has been employed to admit the pilot fuel. The aim of this study was to enhance the fundamental understanding of soot formation and oxidation processes of n-dodecane in the presence of methane in the air charge by parametric variation of methane equivalence ratio, charge temperature, and pilot fuel injection duration. The influence of methane on ignition delay and flame extent of the pilot fuel jet has been determined by simultaneous excited-state hydroxyl radical (OH*) chemiluminescence and Schlieren imaging.
Technical Paper

Optimizing Early Injection Strategy for Diesel PCCI Combustion

2009-11-02
2009-01-2731
A low swirl, low compression ratio engine with narrow fuel spray angle injector was used to investigate the cylinder wall wetting process of early direct injection strategies. A methodology was developed in order to detect liquid fuel impingement on the cylinder wall oil film. First, single injection tests were performed in order to investigate the effect of injection pressure and start of injection on the amount of fuel that can be injected in the combustion chamber without liquid fuel cylinder wall impingement. Then double injection strategies were performed to verify the existence of interactions between successive injections for early injection thermodynamic conditions. Finally an optimization of the injection strategy maximizing the fuel quantity without cylinder wall wetting is proposed. Results obtained for single early direct injection show that all conditions of injection timing during the intake stroke lead to cylinder wall wetting above a given injected mass.
Journal Article

Soot Volume Fraction Measurements in a Gasoline Direct Injection Engine by Combined Laser Induced Incandescence and Laser Extinction Method

2010-04-12
2010-01-0346
In order to study the soot formation and oxidation phenomena during the combustion process of Gasoline Direct Injection (GDI) engines, soot volume fraction measurements were performed in an optical GDI engine by combined Laser-Induced Incandescence (LII) and Laser Extinction Method (LEM). The coupling of these two diagnostics takes advantages of their complementary characteristics. LII provides a two-dimensional image of the soot distribution while LEM is used to calibrate the LII image in order to obtain soot volume fraction fields. The LII diagnostic was performed through a quartz cylinder liner in order to obtain a vertical plane of soot concentration distribution. LEM was simultaneously performed along a line of sight that was coplanar with the LII plane, in order to carry out quantitative measurements of path-length-averaged soot volume fraction. The LII images were calibrated along the same path as that of the LEM measurement.
X