Refine Your Search

Search Results

Author:
Viewing 1 to 8 of 8
Journal Article

Challenging Conventional Wisdom by Utilizing Group II Base Oils in Fuel Efficient Axle Oils

2017-10-08
2017-01-2356
Improving vehicle fuel economy is a major consideration for original equipment manufacturers (OEMs) and their technology suppliers worldwide as government legislation increasingly limits carbon dioxide emissions. At the same time that automotive OEMs have been driving toward lower viscosity axle oils to improve fuel economy, OEMs have worked to improved durability over an extended drain interval. These challenges have driven the use of API group III and/or API group IV base oils in most factory fill axle oils. This paper details the development of a novel lower viscosity SAE 75W-85 axle technology based on group II base oil that rivals the performance of a PAO-based axle oil and challenges the conventional wisdom of not using group II base oils in fuel efficient axle oils.
Technical Paper

A Study of Axle Fluid Viscosity and Friction Impact on Axle Efficiency

2016-04-05
2016-01-0899
The growing need for improved fuel economy is a global challenge due to continuously tightening environmental regulations targeting lower CO2 emission levels via reduced fuel consumption in vehicles. In order to reach these fuel efficiency targets, it necessitates improvements in vehicle transmission hardware components by applying advanced technologies in design, materials and surface treatments etc., as well as matching lubricant formulations with appropriate additive chemistry. Axle lubricants have a considerable impact on fuel economy. More importantly, they can be tailored to deliver maximum operational efficiency over specific or wide ranges of operating conditions. The proper lubricant technology with well-balanced chemistries can simultaneously realize both fuel economy and hardware protection, which are perceived to have a trade-off relationship.
Technical Paper

Breaking the Viscosity Paradigm: Formulating Approaches for Optimizing Efficiency and Vehicle Life

2005-10-24
2005-01-3860
The popularity of light trucks and sport utility vehicles (SUVs), coupled with growing consumer demand for vehicles with more size, weight and horsepower, has challenged the original equipment manufacturers' (OEM) ability to meet the Corporate Average Fuel Economy (CAFE) specifications due to the increased contribution of these vehicle classes on fleet averages. The need for improved fuel economy is also a global issue due to the relationship of reduced fuel consumption to reduced CO2 emissions. Vehicle manufacturers are challenged to match the proper fluid with the application to provide the required durability protection while maximizing fuel efficiency. Recent new viscosity classifications outlined under SAE J306 aid in more tightly defining options for lubricant choice for a given application. Changes to the SAE J306 viscosity classification define new intermediate viscosity grades, SAE 110 and SAE 190.
Technical Paper

Systematic Formulation of Efficient and Durable Axle Lubricants for Light Trucks and Sport Utility Vehicles

2004-10-25
2004-01-3030
Consumer demand for size, weight and horsepower has dictated a prominent role for sport utility vehicles and light trucks in the product lines of major North American automobile manufacturers. Inherently less efficient than passenger cars, these vehicles will be facing more stringent light duty CAFE (Corporate Average Fuel Economy) standards beginning in 2005 when mileage targets will be elevated to 21 mpg; this figure will be further increased to 22.2 mpg by 2007. In order to accommodate both public demand and CAFE requirements, vehicle manufacturers are seeking ways to improve fuel economy through design and material modifications as well as through improvements in lubrication. The axle lubricant may have an important impact on fuel economy, and axle lubricants can be tailored to deliver higher levels of operating efficiency over a wide range of conditions.
Technical Paper

Developing Next Generation Axle Fluids: Part I - Test Methodology to Measure Durability and Temperature Reduction Properties of Axle Gear Oils

2002-05-06
2002-01-1691
Light trucks and sport utility vehicles (SUVs) have become extremely popular in the United States in recent years, but this shift to larger passenger vehicles has placed new demands upon the gear lubricant. The key challenge facing vehicle manufacturers in North America is meeting government-mandated fuel economy requirements while maintaining durability. Gear oils must provide long-term durability and operating temperature control in order to increase equipment life under severe conditions while maintaining fuel efficiency. This paper describes the development of a full-scale light duty axle test that simulates a variety of different driving conditions that can be used to measure temperature reduction properties of gear oil formulations. The work presented here outlines a test methodology that allows gear oil formulations to be compared with each other while accounting for axle changes due to wear and conditioning during testing.
Technical Paper

Developing Next Generation Axle Fluids – Part II - Systematic Formulating Approach

2002-05-06
2002-01-1692
Light trucks and sport utility vehicles (SUVs) have become extremely popular in the United States in recent years, but this shift to larger passenger vehicles has placed new demands upon the gear lubricant. The key challenge facing vehicle manufacturers in North America is meeting government-mandated fuel economy requirements while maintaining the durability required for severe service. In light truck/SUV applications, gear oils must provide operating temperature control under extreme conditions such as trailer-towing. Higher operating temperatures for prolonged periods can adversely affect metallurgical properties and reduce fluid film thickness, both of which can lead to premature equipment failures. In our view, operating temperature is an important indicator of durability. Unfortunately, lubricants optimized for temperature control do not always provide the best fuel economy.
Technical Paper

Automotive Traction Fluids: A Shift in Direction for Transmission Fluid Technology

2000-10-16
2000-01-2906
Driven by global demands for improved fuel economy and reduced emissions, significant improvements have been made to engine designs and control systems, vehicle aerodynamics, and fuel quality. Improvements, such as the continuously slipping torque converter, have also been made to automatic transmissions to increase vehicle efficiency. Recently, belt-continuously variable transmissions (b-CVTs) have been commercialized with the promise of significant fuel economy improvements over conventional automatic transmissions. Automotive traction drive transmissions may soon join belt-CVTs as alternative automatic transmission technology. Much of the information reported in technical and trade publications has been on the mechanics of these traction drive systems. As automotive traction drives move closer to commercial reality, more attention must be given to the performance requirements of the automotive traction fluid.
Technical Paper

Shifting from Automatic to Continuously Variable Transmissions: A Look at Fluid Technology Requirements

1999-10-25
1999-01-3614
New technologies are being commercialized across the automotive industry to address demands for improved fuel economy, emissions reductions, and improved customer satisfaction. Push-belt continuously variable transmissions (b-CVTs) are beginning to command a significant percentage of the market now dominated by manual and conventional automatic transmissions. In addition, automobile manufacturers plan to introduce the first traction drive toroidal-CVTs to the market place within the next five years. A review of the relative benefits and limitations of each of these automatic transmissions exists in the literature. In this paper we consider how the performance requirements of each of these automatic transmission systems impact automatic transmission fluid technology. The physical characteristics and screen test performance of two commercial ATFs, a b-CVTF, and two traction fluids were examined.
X