Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Benchmarking a 2016 Honda Civic 1.5-liter L15B7 Turbocharged Engine and Evaluating the Future Efficiency Potential of Turbocharged Engines

Abstract As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty automotive technologies to support the setting of appropriate national greenhouse gas standards and to evaluate the impact of new technologies on in-use emissions, a 2016 Honda Civic with a 4-cylinder 1.5-liter L15B7 turbocharged engine and continuously variable transmission (CVT) was benchmarked. The test method involved installing the engine and its CVT in an engine dynamometer test cell with the engine wiring harness tethered to its vehicle parked outside the test cell. Engine and transmission torque, fuel flow, key engine temperatures and pressures, and onboard diagnostics (OBD)/CAN bus data were recorded. This paper documents the test results for idle, low, medium and high load engine operation, as well as motoring torque, wide-open throttle torque and fuel consumption during transient operation using both EPA Tier 2 and Tier 3 test fuels.
Technical Paper

Characterization of GHG Reduction Technologies in the Existing Fleet

Abstract By almost any definition, technology has penetrated the U.S. light-duty vehicle fleet significantly in conjunction with the increased stringency of fuel economy and GHG emissions regulations. The physical presence of advanced technology components provides one indication of the efforts taken to reduce emissions, but that alone does not provide a complete measure of the benefits of a particular technology application. Differences in the design of components, the materials used, the presence of other technologies, and the calibration of controls can impact the performance of technologies in any particular implementation. The effectiveness of a technology for reducing emissions will also be influenced by the extent to which the technologies are applied towards changes in vehicle operating characteristics such as improved acceleration, or customer features that may offset mass reduction from the use of lightweight materials.
Technical Paper

Representing GHG Reduction Technologies in the Future Fleet with Full Vehicle Simulation

Abstract As part of an ongoing assessment of the potential for reducing greenhouse gas emissions of light-duty vehicles, the U.S. Environmental Protection Agency has implemented an updated methodology for applying the results of full vehicle simulations to the range of vehicles across the entire fleet. The key elements of the updated methodology explored for this paper, responsive to stakeholder input on the Agency’s fleet compliance modeling, include 1) greater transparency in the process used to determine technology effectiveness, and 2) a more direct incorporation of full vehicle simulation results. This paper begins with a summary of the methodology for representing existing technology implementations in the baseline fleet using EPA’s Advanced Light-duty Powertrain (ALPHA) full vehicle simulation. To characterize future technologies, a full factorial ALPHA simulation of every conventional technology combination to be considered was conducted.
Technical Paper

Constructing Engine Maps for Full Vehicle Simulation Modeling

Abstract The Environmental Protection Agency (EPA) has collected a variety of engine and vehicle test data to assess the effectiveness of new automotive technologies in meeting greenhouse gas (GHG) and criteria emission standards and to monitor their behavior in real world operation. EPA’s Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created to estimate GHG emissions from vehicles using various combinations of advanced technologies and has been refined using data from testing conducted at EPA’s National Vehicle and Fuel Emissions Laboratory. This paper describes a process for constructing complete engine maps using engine dynamometer and in-vehicle test data for use in ALPHA or any other full vehicle simulation which performs similar analyses. The paper reviews how to use available steady state and transient test data to characterize different operating conditions, and then combine the data to construct a complete engine map suitable for ALPHA model simulation.
Technical Paper

Testing and Benchmarking a 2014 GM Silverado 6L80 Six Speed Automatic Transmission

Abstract As part of its midterm evaluation of the 2022-2025 light-duty greenhouse gas (GHG) standards, the Environmental Protection Agency (EPA) has been acquiring fuel efficiency data from testing of recent engines and vehicles. The benchmarking data are used as inputs to EPA’s Advanced Light Duty Powertrain and Hybrid Analysis (ALPHA) vehicle simulation model created to estimate GHG emissions from light-duty vehicles. For complete powertrain modeling, ALPHA needs both detailed engine fuel consumption maps and transmission efficiency maps. EPA’s National Vehicle and Fuels Emissions Laboratory has previously relied on contractors to provide full characterization of transmission efficiency maps. To add to its benchmarking resources, EPA developed a streamlined more cost-effective in-house method of transmission testing, capable of gathering a dataset sufficient to broadly characterize transmissions within ALPHA.
Journal Article

Fleet-Level Modeling of Real World Factors Influencing Greenhouse Gas Emission Simulation in ALPHA

Abstract The Environmental Protection Agency’s (EPA’s) Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created to estimate greenhouse gas (GHG) emissions from light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types with different powertrain technologies, showing realistic vehicle behavior, and auditing of internal energy flows in the model. In preparation for the midterm evaluation (MTE) of the 2017-2025 light-duty GHG emissions rule, ALPHA has been updated utilizing newly acquired data from model year 2013-2016 engines and vehicles. Simulations conducted with ALPHA provide data on the effectiveness of various GHG reduction technologies, and reveal synergies that exist between technologies. The ALPHA model has been validated against a variety of vehicles with different powertrain configurations and GHG reduction technologies.
Technical Paper

Estimating GHG Reduction from Combinations of Current Best-Available and Future Powertrain and Vehicle Technologies for a Midsized Car Using EPA’s ALPHA Model

Abstract The Environmental Protection Agency’s (EPA’s) Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created to estimate greenhouse gas (GHG) emissions from light-duty vehicles[1]. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types with different powertrain technologies, showing realistic vehicle behavior, and auditing of all internal energy flows in the model. The software tool is a MATLAB/Simulink based desktop application. In preparation for the midterm evaluation of the light-duty GHG emission standards for model years 2022-2025, EPA is refining and revalidating ALPHA using newly acquired data from model year 2013-2015 engines and vehicles.
Journal Article

Investigating the Effect of Advanced Automatic Transmissions on Fuel Consumption Using Vehicle Testing and Modeling

Abstract In preparation for the midterm evaluation (MTE) of the 2022-2025 Light-Duty Greenhouse Gas (LD GHG) emissions standards, the Environmental Protection Agency (EPA) is refining and revalidating their Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool using newly acquired data from model year 2013-2015 engines and vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types with different powertrain technologies, showing realistic vehicle behavior, and auditing of all internal energy flows in the model. As part of the validation of ALPHA, the EPA obtained model year 2014 Dodge Chargers equipped with 3.6 liter V6 engines and either a NAG1 five-speed automatic transmission or an 845RE eight-speed automatic transmission.
Journal Article

Design and Demonstration of EPA's Integrated Drive Module for Commercial Series Hydraulic Hybrid Trucks and Buses

The United States Environmental Protection Agency's (EPA) National Center for Advanced Technology (NCAT), located at its National Vehicle and Fuel Emissions Laboratory in Ann Arbor, Michigan, has been a global leader in development and demonstration of low-greenhouse gas emitting, highly fuel efficient series hydraulic hybrid drivetrain technologies. Advances in these exciting new technologies have stimulated industry to begin manufacturing hydraulic hybrids for both commercial truck and non-road equipment markets. Development activities are continuing for other markets, including light-duty vehicles. Given the commercial emergence of these low-greenhouse gas emitting series hydraulic hybrids, EPA has passed the leadership for further development to industry.
Journal Article

Vehicle Component Benchmarking Using a Chassis Dynamometer

Abstract The benchmarking study described in this paper uses data from chassis dynamometer testing to determine the efficiency and operation of vehicle driveline components. A robust test procedure was created that can be followed with no a priori knowledge of component performance, nor additional instrumentation installed in the vehicle. To develop the procedure, a 2013 Chevrolet Malibu was tested on a chassis dynamometer. Dynamometer data, emissions data, and data from the vehicle controller area network (CAN) bus were used to construct efficiency maps for the engine and transmission. These maps were compared to maps of the same components produced from standalone component benchmarking, resulting in a good match between results from in-vehicle and standalone testing. The benchmarking methodology was extended to a 2013 Mercedes E350 diesel vehicle. Dynamometer, emissions, and CAN data were used to construct efficiency maps and operation strategies for the engine and transmission.
Technical Paper

Downsized Boosted Engine Benchmarking and Results

Abstract Light-duty vehicle greenhouse gas (GHG) and fuel economy (FE) standards for MYs 2012-2025 are requiring vehicle powertrains to become much more efficient. One key technology strategy that vehicle manufacturers are using to help comply with GHG and FE standards is to replace naturally aspirated engines with smaller displacement “downsized” boosted engines. In order to understand and measure the effects of this technology, the Environmental Protection Agency (EPA) benchmarked a 2013 Ford Escape with an EcoBoost® 1.6L engine. This paper describes a “tethered” engine dyno benchmarking method used to develop a fuel efficiency map for the 1.6L EcoBoost® engine. The engine was mounted in a dyno test cell and tethered with a lengthened engine wire harness to a complete 2013 Ford Escape vehicle outside the test cell. This method allowed engine mapping with the stock ECU and calibrations.
Technical Paper

Energy Management Options for an Electric Vehicle with Hydraulic Regeneration System

Energy security and climate change challenges provide a strong impetus for investigating Electric Vehicle (EV) concepts. EVs link two major infrastructures, the transportation and the electric power grid. This provides a chance to bring other sources of energy into transportation, displace petroleum and, with the right mix of power generation sources, reduce CO₂ emissions. The main obstacles for introducing a large numbers of EVs are cost, battery weight, and vehicle range. Battery health is also a factor, both directly and indirectly, by introducing limits on depth of discharge. This paper considers a low-cost path for extending the range of a small urban EV by integrating a parallel hydraulic system for harvesting and reusing braking energy. The idea behind the concept is to avoid replacement of lead-acid or small Li-Ion batteries with a very expensive Li-Ion pack, and instead use a low-cost hydraulic system to achieve comparable range improvements.
Technical Paper

Characterization of the Fluid Deaeration Device for a Hydraulic Hybrid Vehicle System

The attractiveness of the hydraulic hybrid concept stems from the high power density and efficiency of the pump/motors and the accumulator. This is particularly advantageous in applications to heavy vehicles, as high mass translates into high rates of energy flows through the system. Using dry case hydraulic pumps further improves the energy conversion in the system, as they have 1-4% better efficiency than traditional wet-case pumps. However, evacuation of fluid from the case introduces air bubbles and it becomes imperative to address the deaeration problems. This research develops a bubble elimination efficiency testing apparatus (BEETA) to establish quantitative results characterizing bubble removal from hydraulic fluid in a cyclone deaeration device. The BEETA system mixes the oil and air according to predetermined ratio, passes the mixture through a cyclone deaeration device, and then measures the concentration of air in the exiting fluid.