Refine Your Search

Topic

Search Results

Technical Paper

A Knowledge Based Algorithm to Streamline Estimation of Engine Performance Parameters from Combustion Pressure, Crank Signal -Time History Test Data

2015-01-14
2015-26-0075
In the quest towards meeting stringent emission norms as well as robust performance requirements, there is an ever growing need to continually research into and develop high caliber engines. This necessitates handling huge amounts of generated test data that monitors a multitude of variables like engine speed, combustion chamber pressure, engine load and the like. Further, in order to establish the scalar engine performance parameters like efficiency, Brake Mean Effective Pressure, Indicated Mean Effective Pressure, P-V diagram, post processing is required to be done on the measured test data that involves complex calculations like numerical integration and other mathematical operations on a grand scale. In order to meet this objective, the authors hereby showcase a knowledge based algorithm that integrates and streamlines the entire procedure from handling of the huge test data to performing all the calculations in order to arrive at the scalar engine performance parameters.
Technical Paper

An Investigation with Mechanical Supercharging as Boosting Solution on Less than 0.5 Liter Single Cylinder Diesel Engine towards Bharat Stage VI Emission Development

2019-01-09
2019-26-0152
Small single & two cylinder diesel engines, still have primitive technical design features and extensively used in India and various Asian countries to power small and light motor vehicles viz., three wheelers, light duty four wheelers. These vehicles have become inevitable for the transport for both urban and rural areas. Vehicles with small single & two cylinder engines have high market demand in commercial transport due to restrictions on entry of Heavy Commercial Vehicles (HCV) in congested cities roads. Due to ever rising market demand for higher power and torque requirement along with better fuel economy, vehicle manufacturer are developing high Brake Mean Effective Pressure (BMEP) engines or replacing single cylinder engine by two cylinder engine, similarly two cylinder engine by three cylinder engines. Further, these engines should meet the present and forthcoming stringent emission limits.
Technical Paper

Case Study on Thermal Management Strategies for HDD BS VI Exhaust Aftertreatment Performance Using Semi Physical Modelling Approach

2019-01-09
2019-26-0270
This paper focuses on assessment of different thermal management strategies for heavy duty Diesel(HDD) engine aftertreatment using semi-physical model for both engine and aftertreatment. Aftertreatment configuration of DOC, DPF and SCR is considered for six cylinder HDD engine. SCR reaction kinetics, ammonia adsorption and desorption parameters were calibrated with the data from synthetic test bench. Calibrated aftertreatment model is integrated with semi physical 6-cylinder HDD engine model to validate over steady state as well as transient measurement data. Engine model is modified for different thermal management strategies such as Intake, Exhaust throttle valve, start of main injection, Post injection and evaluated for their impact on performance and emission parameters. Results over operating point are analysed to select best strategy at cold operating zone.
Journal Article

Cost Effective BS-VI Solution - A Combined Low Temperature Combustion and Conventional Diesel Combustion Concepts

2019-01-09
2019-26-0033
Air pollution in India and also global warming are two major concern in the country. To address this situation, India is moving from BS-IV to BS-VI for on-road applications with 90% reduction in NOx and 50% in PM with limit on particulate number. Also moving to Trem-IV and Trem-V for off-road applications subsequently. It needs higher efficiency after-treatment systems like SCR and DPF to achieve such lower emission levels. Addition of these complex after-treatment system, severely increase the cost of diesel power plant with heavy penalty on fuel economy. Hence, it is challenge to auto industry to reduce the complexity and cost, so that it requires an alternate solution to reduce NOx and PM emissions at source to reduce cost and system complexity. Low Temperature Combustion (LTC) is a potential concept to reduce the NOx and PM emissions simultaneously.
Technical Paper

Design / Analysis and Development of Cylinder Head for High Performance 3 Cylinder CRDi Euro-V Diesel Engine for a High Combustion Pressure of 200 Bar

2010-10-05
2010-01-1975
This work is a part of program on “Development of High Performance DI, 3 Cylinder CRDI Diesel Engine to meet Euro-IV/V Emission Norms focused on automotive passenger car application purpose. This is a 3 Cylinder, TCIC engine designed for combustion pressure of 160 bar max for first stage which is being upgraded to 200 bar max in the second stage. Cylinder Head design is a part of complicated configuration whose construction and principal dimensions are dependent on the size of inlet and exhaust valves, fuel injectors positioning and mounting, port layout and swirl and shape of combustion chambers. The cylinder head of a direct-injection diesel engine has to perform many functions. It has to bring charge air to the cylinder and exhaust gas from the cylinder, with minimum pumping loss and required swirl and other properties of charge motion.
Technical Paper

Design and Development of High Performance Diesel Engines for Off-Highway and Genset Applications with Emerging Technologies

2008-10-07
2008-01-2676
To meet the latest trends in Internal Combustion engines regarding efficiency, emissions and durability, an integrated approach to engine development is required. This paper describes about a Robust, Reliable and an integrated approach used in design and development of an engine for high power density which can be adopted for both Off-highway application as well as Genset application. The engine is developed to meet US - EPA Tier-III Emission Norms and MoEF (Genset Emission Norms for India formulated by Ministry of Environment and Forest) emission norms respectively. This paper discusses various technologies applied in developing this engine to achieve high power density, low exhaust emissions, and low noise and vibrations. This 4 valve per cylinder engine is created largely within a digital environment using the latest computer aided design (CAD) and computer aided engineering (CAE) techniques and simulation tools.
Technical Paper

Design and Development of Variable Valve Actuation (VVA) Mechanism Concept for Multi-Cylinder Engine

2015-01-14
2015-26-0021
The desire for higher fuel economy, improved performance and driveability expectations of customers from engines are gradually increasing along with stringent emission regulations set by the government. Many original engine manufacturing companies are prompted to consider the application of higher function variable valve actuation mechanisms in their next generation vehicles as a solution. The VVA is a generalized term used to describe any mechanism or method that can alter the shape or timing of a valve lift event within an internal combustion engine. The VVA allows lift, duration or timing (in various combinations) of the intake and/or exhaust valves to be changed while the engine is in operation. Engine designers are prompted to consider Variable Valve Actuation (VVA) system because of the inherent compromises with fixed valve events. The major goal of a VVA engine is to control the amount of air inducted into the engine which is a direct measure of torque.
Technical Paper

Development of Diesel-Ethanol Engine for HCV

2019-01-09
2019-26-0089
Diesel engines dominate in Heavy-Duty applications due to its better fuel economy, higher durability and larger reliability. Fuels derived from petroleum resources are depleting daily and it’s become a scarce resource for future generation to come. With growing environmental consciousness of the adverse implications brought by excessive usage of fossil fuels, the battle for finding alternative fuels as their substitution is getting heated up. At present, renewable energy from bio-fuels has been peddled as one of the most promising substitution for petroleum derived diesel. Using bio-ethanol blended diesel fuel for automobile can significantly reduce diesel usage and exhaust greenhouse gases. Bio-ethanol can be produced by alcoholic fermentation of sucrose or simple sugars. The main drawback is that ethanol is immiscible with diesel fuel over a wide range of temperatures, and the hygroscopic nature of ethanol leading to phase separation in blend.
Journal Article

Development of Dual Fuel (Diesel-CNG) Engine for SUV Application in India

2015-01-14
2015-26-0058
Towards the effort of reducing pollutant emissions, especially soot and nitrogen oxides, from direct injection Diesel engines, engineers have proposed various solutions, one of which is the use of a gaseous fuel as a partial supplement for liquid Diesel fuel. These engines are known as dual fuel combustion engines. A dual fuel (Diesel-CNG) engine is a base diesel engine fitted with a dual fuel conversion kit to enable use of clean burning alternative fuel like compressed natural gas. In this engine diesel and natural gas are burned simultaneously. Natural gas is fed into the cylinder along with intake air; the amount of diesel injection is reduced accordingly. Dual fuel engines have number of potential advantages like fuel flexibility, higher compression ratio, and better efficiency and less modifications on existing diesel engines. It is an ecological friendly technology due to lower PM and smoke emissions and retains the efficiency of diesel combustion.
Technical Paper

Development of In-house Competency to Build Compact Gerotor Oil Pump for High Speed Diesel Engine Application

2013-11-27
2013-01-2738
Gerotor pump is a positive displacement pump unit which is widely used for lubrication in on-road and off-road engine applications. This paper is focused on Gerotor pump design competency established at ARAI comprising of design of inner and outer rotors, suction & delivery ports, optimizing inlet and outlet diameters & its position, development of methodology to calculate oil flow rate, volumetric efficiency, mechanical efficiency & slippage. The finalization of design is followed by CFD of Gerotor pump to optimize the pressure and flow pulsation. A trochoidal profile is used to design the inner and outer rotors and its conjugate profile are realized by a set of equations using a method based on the theory of gearing. Suction and delivery port is analytically designed based on the same design parameters of the trochoidal profile.
Journal Article

Development of Multi Cylinder Turbocharged Natural Gas Engine for Heavy Duty Application

2017-01-10
2017-26-0065
CNG has recently seen increased penetration within the automotive industry. Due to recent sanctions on diesel fuelled vehicles, manufactures have again shifted their attention to natural gas as a suitable alternative. Turbocharging of SI engines has seen widespread application due to its benefit in terms of engine downsizing and increasing engine performance [1]. This paper discusses the methodology involved in development of a multi cylinder turbocharged natural gas engine from an existing diesel engine. Various parameters such as valve timing, intake volume, runner length, etc. were studied using 1D simulation tool GT power and based on their results an optimized configuration was selected and a proto engine was built. Electronic throttle body was used to give better transient performance and emission control. Turbocharger selection and its location plays a critical role.
Technical Paper

Dynamic Simulation of 6 Speed Gearbox of Tipper Application to Improve Gear Contact Life

2017-01-10
2017-26-0060
The function of the automotive transmission is to reliably transmit torque and motion between engine and wheels at acceptable levels of noise, vibration and desired life. Gear drive components most commonly subject to distress are the gears, shafts, bearings and seals. The variables in the entire power-system, such as vibration, misalignment, type of lubricant used, material properties, operating temperature and abuse are considered as the main root causes for the gear failures. The bending and contact strength of the gear tooth are considered to be one of the main contributors for the failure of the gear in a gear set. Thus, Heartzian stress analysis has become popular as an area of research on gears to minimize or to reduce the failures of gears. In this research work, one of the major field issues related to 1st gear and reverse gear pitting at very low life for 6 speed manual transmission for mining/ quarry application is studied.
Technical Paper

Estimation of Temperature and Velocity Uniformity of Exhaust Gases in Heavy Commercial Vehicle Exhaust System having SCR After Treatment Technology

2016-02-01
2016-28-0112
For meeting upcoming BS IV & BS V emission norms in Heavy Commercial Vehicles, most of the manufacturers are taking SCR after treatment route. Though SCR system is more complex and involves higher cost impact, an optimized SCR system can bring down the payback period to about one year due to improved fuel economy. For development of an SCR after treatment system, selection of a correct SCR catalyst and its position in the system is very important. NOX conversion efficiency of catalyst depends on exhaust gas temperature at the catalyst and the velocity distribution over the face of the catalyst. Generally catalysts are evaluated for the conversion efficiency in engine test bed. In a drive to have a first-time-right solution, a CFD analysis was carried out considering the low and high flow rate conditions. CFD simulation models and the corresponding results were used as a predictive tool in the exhaust system development process.
Technical Paper

Injection Strategies, Optimization and Simulation Techniques on DI CNG Technology

2015-01-14
2015-26-0046
CNG has long since been established as a front runner amongst other available alternative fuels. In India, its infrastructure and penetration far exceeds others. While other, more efficient alternatives are been researched, CNG has established itself in the market as the alternative fuel of choice for majority of Indians. CNG technology has evolved itself from the basic venturi system to the more efficient sequential injection system nowadays. While the efficiency of an engine using sequential injection CNG has increased, the inherent problem with respect to lower volumetric efficiency and hence less power still persists. Direct injection CNG technology is seen as the solution to this age old problem. In the older days, the lack of technological expertise in SI direct fuel injection provided a stumbling block for development of direct gas injection.
Technical Paper

Numerical and Experimental Analysis of Intake Flow Structure and Swirl Optimization Strategies in Four-Valve Off-Highway Diesel Engine

2019-01-09
2019-26-0042
Future emission limits for off-highway application engines need advanced power train solutions to meet stringent emissions legislation, whilst meeting customer requirements and minimizing engineering costs. DI diesel engines with four valves per cylinder are widely used in off- highway applications because of the fundamental advantages of higher volumetric efficiency, lower pumping loss, symmetric fuel spray & distribution in combination with the symmetric air motion which can give nearly optimal mixture formation and combustion process. As a result, the fuel consumption, smoke levels and exhaust emissions can be considerably reduced. In particular, the four-valve technology, coupled with mechanical low pressure and electronic high pressure fuel delivery systems set different requirements for inlet port performance. In the present paper four valve intake port design strategies are analysed for off highway engine using mechanical fuel injection systems.
Technical Paper

Predicting and Optimizing CNG Vehicle Performance on Chassis Dynamometer through 1D Simulation by using Vehicle Performance Algorithm

2015-01-14
2015-26-0059
The paper deals with the simulation of a Light Commercial Vehicle (LCV) using vehicle performance algorithms. This method speeds up the product development process. Also by using these kind of methodology in vehicle simulation there is much noticeable reduction in cost of testing. The simulation model is used for parametric studies of the vehicle and also to attain objectives such as to optimize transmission ratio, full load acceleration, maximum tractive force, gradient performance, fuel consumption and the exhaust emission. In this case study, simulation model of a CNG, LCV is used to analyze the performances similar to that done in a chassis dynamometer. The simulation leads to the prediction and evaluation of various parameters such as fuel consumption, exhaust emissions, full load acceleration, gradient performance & maximum tractive effort for Indian Driving Cycle.
Technical Paper

Review on Advanced Low Temperature Combustion Approach for BS VI

2017-01-10
2017-26-0042
With the announcement, as per draft notification GSR 187 (E) dated 19th Feb 2016 issued by MoRTH (Ministry of Road Transport and Highways), on vehicle emission standards to leapfrog from BS IV to BS VI by 2020, diesel engines would be greatly facing challenges to meet the stringent emission requirements of 90% reduction in PM and 50% reduction in NOx emissions simultaneously. Up to BS IV, in-cylinder strategies utilizing higher fuel injection pressure, higher intake boost, lower to moderate EGR, optimized combustion chamber design and lower intake manifold temperature would be sufficient. But meeting emission levels at BS VI levels would require a combination of both in-cylinder combustion control and after treatment system [1]. However, unlike Europe and US markets where wide spread adoption of after treatment solution is viable, for Indian market it would be impeded by infrastructure availability, system cost and cost of ownership.
Technical Paper

Simulation Methodology for Duty Cycle based Fuel Consumption Calculation for Heavy Commercial Vehicles

2021-09-22
2021-26-0221
Automobile industry is facing challenges in the field of technological innovation and achieving minimum Total Cost of Ownership (TCO) despite rise in fuel prices. To overcome these challenges is certainly a challenging task. In doing so, automobile sector is mainly focused on passenger safety, comfort, reliability, meeting stringent emission norms, and above all reducing the vehicle fuel consumption. Referring to the Paris climate agreement, and India’s commitment to reduce the CO2 intensity by 33% - 35% by 2030 below the 2005 levels [1], it is imperative to lay down strong policies and procedure to curb the fuel consumption to contribute for reduction in carbon foot print and oil imports. Transportation sector is majorly responsible for the GHG Emission of which the CO2 emission from commercial vehicles is nearly 73% [2], although the total sales of commercial vehicles are around 4% of cumulative vehicle sales.
Technical Paper

Strategies to Meet Revised Stage-II Emission Norms for TCIC Diesel Genset Engine above 75Kw

2015-01-14
2015-26-0100
The Objective of the work is to upgrade existing series of multi cylinder DI turbocharged intercooled diesel engines to meet revised stringent Stage-II emission norms for diesel genset application. In this engine tuning activity, focus is given on optimization of engine without any major modification on engine design features. In recent years, the demand use and penetration of diesel operated generating sets for the power generation application has sharply rise in India. These sharp rises in the DG engines have made the high impact on pollutants emitted by these sets. Hence, concerned authorities have first enforced the limits on the pollutants emitted by these sets in the year 2004. Further these emission limits were tightened recently and reduced the emissions from diesel engines. Concerned authorities implemented the revised emission norms with effective from July 2014. The reduction in NOx+HC emission is around 62% for the engines having rated power above 75 kW.
Technical Paper

Study of In-Cylinder Tumble Effect on Spark Ignition Direct Injection (SI-DI) Engine Performance Using Gasoline, CNG & E85 Fuels and Simulation Technique

2017-01-10
2017-26-0076
Vehicles with direct injection engines employ various methods for mixing fuel and air in an engine cylinder. Efficient mixing increases combustion burn rate, improving combustion stability and knock suppression. Spark ignition engines may use tumble flow motion to generate turbulence, which includes rotational motion generally perpendicular to the cylinder axis to improve air and fuel mixing. Depending on operating conditions, more or less tumble may be advantageous. In this paper the tumble motion of the charge air is studied and simulated only in the suction stroke. A direct injected turbocharged combustion system employing central-mounted multihole injector. This paper presents the comparative study of effect of intake port design with various levels of tumble motion for fuels used in SIDI engines on the engine performance characteristics.
X