Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Two-Dimensional In-Cylinder Soot Volume Fractions in Diesel Low Temperature Combustion Mode

2011-04-12
2011-01-1390
Soot Volume Fraction (SVF) measurements were performed in an IFP Energies nouvelles optical single cylinder Diesel engine operated in Low Temperature Combustion (LTC) conditions. The engine was equipped with a sapphire liner, a dedicated flat bowl piston and a six-hole common-rail high pressure injector. The piston design included four quartz windows allowing optical access into the bowl. The aim of this work was to study soot formation and oxidation during the LTC Diesel combustion process and to build a database providing soot formation and oxidation data under a set of engine conditions to help developing and testing Computational Fluid Dynamics (CFD) models. Two complementary optical diagnostic techniques were combined: Planar Laser Induced Incandescence (PLII) and Laser Extinction Method (LEM).
Technical Paper

Modeling the Laminar Flame Speed of Natural Gas and Gasoline Surrogates

2010-04-12
2010-01-0546
An unified model with a single set of kinetic parameters has been proposed for modeling laminar flame velocities of several alkanes using detailed kinetic mechanisms automatically generated by the EXGAS software. The validations were based on recent data of the literature. The studied compounds are methane, ethane, propane, n-butane, n-pentane, n-heptane, iso-octane, and two mixtures for natural gas and surrogate gasoline fuel. Investigated conditions are the following: unburned gases temperature was varied from 300 to 600 K, pressures from 0.5 to 25 bar, and equivalence ratios range from 0.4 to 2. For the overall studied compounds, the agreement between measured and predicted laminar burning velocities is quite good.
Technical Paper

Modeling Coupled Processes of CO and Soot Formation and Oxidation for Conventional and HCCI Diesel Combustion

2007-04-16
2007-01-0162
The study of soot oxidation and CO formation in internal combustion engine applications is the subject of numerous recent investigations. Their modeling is particularly important for Diesel operating conditions. Models have been developed recently at IFP to account for the complicated kinetic processes involved in CO / soot production and oxidation. This paper presents the equations for CO formation and oxidation based on a reduced 6 step chemistry model coupled with the PSK reduced soot production and oxidation mechanism. The species are accounted for in the conservation equations. Model development is done on the framework of the ECFM3Z engine combustion model. The global CO/soot model is first validated in a constant volume high pressure cell against LII measurements. Model parameters are adjusted and kept constant for the remaining of the simulations. Then, engine simulations are used to validate the model behavior in conventional and HCCI Diesel conditions.
X