Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Application of Computer Simulation Using FEM and Experimental Techniques for the Reduction of Noise in Air Cooled Engine and Crankcase Cover of Motorcycle

1999-05-17
1999-01-1800
Measurement of sound intensity techniques has very good application in the source identification of a particular noise character. It has been applied effectively along with modal analysis and FE experimental excitation techniques to find out root cause of a particular noise character in small gasoline engine. A FEM shell model was used to make cylinder block and cylinder head model. FEM simulation was carried out which matched with experimental results. It helped to remove the noise character from engine. The other part of the paper describes the noise reduction of the crankcase cover used for the same motorcycle. It houses crankcase as well as two speed gearbox. The methodology involves very effective combination of experimental harmonic analysis, FE model with the shell element for the 3 piece crankcase cover, and experimental measurements. A particular sequence of this experimental techniques along with computer simulation techniques gives extremely good results.
Technical Paper

Engine Induced Vibration Control for a Motorcycle Chassis Frame by Right Combination of Finite Element Method and Experimental Techniques

1999-05-17
1999-01-1754
Modal Analysis is a well established technique which defines the inherent dynamic properties of the structure. At the same time the experimental harmonic analysis by shaker method is also a very important tool in solving some of the engine induced vibration problems in the automotive structure. Computer simulation technique using finite element methodology has been very effective tool in simulating the problem. However the right combination of these techniques has been a tricky situation. The paper describes the methodology of using right combination of these techniques to reduce the motorcycle chassis vibration which are induced by engine and drive-line excitation in minimum time. The method involves the Finite Element Modelling with shell elements, experimental harmonic analysis with frequency sweep upto 600 Hz, validation of the FE model, animation techniques and find out correct modification to fine tune the structure to eliminate the engine induced vibrations in the frame.
X