Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Direct Injection into the Exhaust Stream of Gaseous Ammonia: Design and Efficiency of Injection and Mixing Hardware

2015-04-14
2015-01-1021
Current legislative trends regarding diesel emissions are striving to achieve two seemingly competing goals: simultaneously lowering NOx and greenhouse gas (GHG) emissions. These two goals are considered at odds since lower GHG emissions (e.g. CO2) is achieved via high combustion efficiency that result in higher engine out NOx emissions and lower exhaust gas temperatures [1, 2]. Conversely, NOx reduction technologies such as SCR require temperatures above 200°C for dosing the reductant (DEF) [3, 4, 5] as well as for high conversion efficiencies [1, 2, 6, 7, 8, 9]. Dosing DEF requires injection pressures around 5 bar to ensure proper penetration into the exhaust stream as well as generate the appropriate spray pattern and droplet sizes. Dosing DEF generally requires long mixing and/or high turbulence (high restriction) areas so that the aqueous urea solution can be converted into gaseous NH3 without deposit formation [8, 10, 11, 12, 13, 14, 15].
Journal Article

Deposit Formation in Urea-SCR Systems

2009-11-02
2009-01-2780
Formation of urea injection related deposits in a heavy-duty urea-SCR system was studied using an engine lab setup. The exhaust system was instrumented with thermocouples to track temperature changes caused by the liquid spray. Impact of operating parameters (exhaust and ambient temperature, urea solution injection rate) and system design modification (insulation, wiremesh insert) on the temperature profiles and deposit quantities was studied. Deposits were found in all tests conducted under typical exhaust temperatures. Deposition rate increased with lower exhaust and ambient temperature, and with higher injection rate. Mixer insulation and wiremesh upstream of the mixer reduced the deposits.
X