Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Development of Front-Wheel-Drive ELSD for Efficient Performance and Safety

2012-04-16
2012-01-0305
The open (standard) differential provides an important function in vehicle dynamics and handling by splitting the applied driveline torque and allowing each wheel or axle to spin at different speeds. This function is necessary to eliminate axle bind-up while negotiating turns. However, it inherently impedes optimal traction and mobility performance by allowing the available torque to be limited by the wheel or axle having the least amount of traction. Loss of traction could result in loss of driveline torque control and a resulting loss of vehicle control. This loss of control could be catastrophic in the case of higher speed maneuvers. The proposed electronically controlled hydraulic limited slip differential solution corrects this problem, seamless to the driver, while maintaining the fundamental open differential function. Furthermore, this system maintains efficient forward motion compared to other solutions that slow the vehicle down while expending valuable energy.
Technical Paper

Stability-Enhanced Traction and Yaw Control using Electronic Limited Slip Differential

2006-04-03
2006-01-1016
Typical traction control systems based on brake intervention have the disadvantage of dissipating an amount of energy roughly equal to that spent in biasing the high-friction wheel. Fully locked differentials achieve the best possible longitudinal traction but, in situations such as slippery or split-friction (split-μ) surfaces, the lateral dynamics of the vehicle can be degraded and deviate from the driver's intended direction. This paper presents an active stability control strategy using electronic limited slip differentials to enhance the vehicle lateral dynamics while preserving longitudinal motion. The proposed control system includes stability enhancement of the traction control and yaw stability control. The stability-enhanced traction control is evaluated under the condition of straight-line full-throttle launching on a split-μ ice/snow surface. The experimental data show a significant stability improvement in a traction mode.
Technical Paper

Minimizing Dynamic Rollover Propensity with Electronic Limited Slip Differentials

2006-04-03
2006-01-1279
Vehicle rollover has the highest fatality rate among non-collision vehicle crashes. This paper introduces a control scheme with electronically controlled limited slip differential (ELSD) to prevent vehicle rollover. Although the analysis focuses on only an un-tripped and on-road scenario which is a small portion of vehicle rollover accidents, it intends to minimize the dynamic rollover propensity by meeting the National Highway Traffic Safety Administration's (NHTSA) fishhook test. A nonlinear model of planar vehicle dynamics with roll motion is analyzed, and the general characteristics of ELSD are presented. Based on that, a rollover mitigation algorithm is proposed. Finally, a computer simulation demonstrates the effectiveness of the rollover mitigation algorithm.
Technical Paper

Dynamic Modeling of Torque-Biasing Devices for Vehicle Yaw Control

2006-02-14
2006-01-1963
This paper focuses on modeling of torque-biasing devices of a four-wheel-drive system used for improving vehicle stability and handling performance. The proposed driveline system is based on nominal front-wheel-drive operation with on-demand transfer of torque to the rear. The torque biasing components of the system are an electronically controlled center coupler and a rear electronically controlled limited slip differential. Kinematic modeling of the torque biasing devices is introduced including stage transitions during the locking stage and the unlocking/slipping stage. Analytical proofs of how torque biasing could be used to influence vehicle yaw dynamics are also included in the paper. A yaw control methodology utilizing the biasing devices is proposed. Finally, co-simulation results with Matlab®/Simulink® and CarSim® show the effectiveness of the torque biasing system in achieving yaw stability control.
X