Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

An Investigation Into the Effect of a Diesel/Water Emulsion on the Size and Number Distribution of the Particulate Emissions from a Heavy-Duty Diesel Engine

2003-10-27
2003-01-3168
The current test programmes have measured emissions from a heavy-duty bus engine installed on a test bench and also on a chassis dynamometer whilst running on a Diesel/water emulsion fuel. Testing was carried out over both steady state and transient test cycles. Emissions were also measured on the test bed from the engine fitted with both a Diesel particulate filter and an oxidation catalyst. Alongside the measurement of the regulated emissions, particle number distributions (by size) and total particle counts were also measured. Size selected particle counts were made over the transient tests and are compared between engine test and chassis dynamometer. This paper demonstrates the influence of the emulsion on the particle size distribution, the effects of after-treatment and lubricant on the particle size emissions of an engine running on an emulsion and also the influence of sampling conditions on the measurements recorded.
Journal Article

Impact of Biodiesel Blends on Fuel Consumption and Emissions in Euro 4 Compliant Vehicles

2010-05-05
2010-01-1484
Fatty Acid Methyl Ester (FAME) products derived from vegetable oils and animal fats are now widely used in European diesel fuels and their use will increase in order to meet mandated targets for the use of renewable products in road fuels. As more FAME enters the diesel pool, understanding the impact of higher FAME levels on the performance and emissions of modern light-duty diesel vehicles is increasingly important. Of special significance to Well-to-Wheels (WTW) calculations is the potential impact that higher FAME levels may have on the vehicle's volumetric fuel consumption. The primary objective of this study was to generate statistically robust fuel consumption data on three light-duty diesel vehicles complying with Euro 4 emissions regulations. These vehicles were evaluated on a chassis dynamometer using four fuels: a hydrocarbon-only diesel fuel and three FAME/diesel fuel blends containing up to 50% v/v FAME. One FAME type, a Rapeseed Methyl Ester (RME), was used throughout.
Technical Paper

Measurement of the Number and Size Distribution of Particle Emissions from Heavy Duty Engines

2000-06-19
2000-01-2000
Air quality monitoring of PM10 and associated health studies have focused interest on the size and the number of particles emitted to, and found in, the atmosphere. Automotive sources are one of the important elements in this, and CONCAWE have completed a study of heavy duty diesel particle emissions, complementing their previously reported light duty work. This heavy duty programme, presented here, investigated the nature of particulate emissions from two heavy duty engines (representative of different emissions levels), operating on three marketed fuels, over their respective European legislative heavy duty test cycles. The programme has investigated some of the complexities associated with obtaining credible data (e.g. dilution ratios, system stabilisation time etc.). The number distributions, which were measured over a wide size range (3 to 1000 nm), have been split into two size ranges, representative of nucleation mode and accumulation mode particles.
Technical Paper

Measurement of the Numbers of Emitted Gasoline Particles: Genuine or Artefact?

2000-10-16
2000-01-2957
Many researchers have reported the measurement of high numbers of emitted particles from gasoline vehicles operating at high speed. To date, in the absence of standard test protocols or analytical techniques, these measurements have all been made from a dilution tunnel set up according to regulatory procedures. Currently, there is great uncertainty relating to the use of the dilution tunnel as a suitable tool for the measurement of automotive particle size and number distribution and also the relevance of the procedure to ambient measurement of the same parameters. Gasoline particle number emissions, as measured on a dilution tunnel, are low at speeds under 120km/h. Beyond this speed, high numbers of very small particles have been measured. There is some evidence to show that these particles may be formed as an artefact within the sampling system, either from the desorption of deposited material or from the pyrolysis of other material in the sampling system itself.
Technical Paper

The Effect of Sulphur-Free Diesel Fuel on the Measurement of the Number and Size Distribution of Particles Emitted from a Heavy-Duty Diesel Engine Equipped with a Catalysed Particulate Filter

2003-10-27
2003-01-3167
Following concern about the association between adverse health effects and ambient particulate concentrations, there are now an increasing number of heavy-duty Diesel engines fitted with catalysed particulate filters. These filters virtually eliminate carbon particle emissions but there is some evidence suggesting a potential to form a cloud of secondary nucleation particles post trap. This event occurs at high temperature operating conditions and is produced mainly from the increased sulphate production over the catalyst. This paper investigates the measurement of particle emissions from a heavy-duty engine operating over the European legislated cycle, both with and without a filter fitted and investigates how emissions are affected by the use of a sulphur-free Diesel fuel. The work also demonstrates a contribution to the measured nucleation particles from material desorbed not only from the trap, but also from the exhaust system.
X