Refine Your Search

Search Results

Author:
Viewing 1 to 7 of 7
Technical Paper

Variability in Circumstances Underlying Pedal Errors: An Investigation Using the National Motor Vehicle Crash Causation Survey

2018-04-03
2018-01-0493
Pedal errors have been widely reported as a leading cause of unintended acceleration (UA) incidents for several decades. Many governmental and scientific studies have attempted to characterize the rate of pedal errors leading to UA incidents using data from the North Carolina Crash Database. These data, however, are limited for various reasons, including the absence of an in-depth investigation of causal factors contributing to the accident. To further examine the rate of UA incidents related to pedal error, we utilized the National Motor Vehicle Crash Causation Survey (NMVCCS), a nationally representative sample of 5,471 crashes that occurred between 2005 and 2007. Using a targeted keyword search, we identified 48 potential pedal errors (30 driver-admitted), providing a national estimate of 17,919 pedal errors. We then investigated accident characteristics across these specific cases, including demographics of the drivers, vehicle characteristics, and pre-crash critical events.
Technical Paper

Lane-Keeping Behavior and Cognitive Load with Use of Lane Departure Warning

2017-03-28
2017-01-1407
Lane Departure Warning (LDW) systems, along with other types of Advanced Driver Assistance Systems (ADAS), are becoming more common in passenger vehicles, with the general aim of improving driver safety through automation of various aspects of the driving task. Drivers have generally reported satisfaction with ADAS with the exception of LDW systems, which are often rated poorly or even deactivated by drivers. One potential contributor to this negative response may be an increase in the cognitive load associated with lane-keeping when LDW is in use. The present study sought to examine the relationship between LDW, lane-keeping behavior, and concurrent cognitive load, as measured by performance on a secondary task. Participants drove a vehicle equipped with LDW in a demarcated lane on a closed-course test track with and without the LDW system in use over multiple sessions.
Technical Paper

Accelerator-to-Brake Pedal Transition Movements during On-Road Stopping in an Older Population

2017-03-28
2017-01-1396
Unintended acceleration events due to pedal misapplication have been shown to occur more frequently in older vs. younger drivers. While such occurrences are well documented, the nature of these movement errors is not well-characterized in common pedal error scenarios: namely, on-road, non-emergency stopping or slowing maneuvers. It is commonly assumed that drivers move in a ballistic or “direct hit” trajectory from the accelerator to the brake pedal. However, recent simulator studies show that drivers do not always move directly between pedals, with older drivers displaying more variable foot trajectories than younger drivers. Our study investigated pedal movement trajectories in older drivers ages 67.9 ± 5.2 years (7 males, 8 females) during on-road driving in response to variable traffic light conditions. Three different sedans and a pick-up truck were utilized.
Technical Paper

Driver Reactions in a Vehicle with Collision Warning and Mitigation Technology

2015-04-14
2015-01-1411
Advanced Driver Assistive System (ADAS) technologies have been introduced as the automotive industry moves towards autonomous driving. One ADAS technology with the potential for substantial safety benefits is forward collision warning and mitigation (FCWM), which is designed to warn drivers of imminent front-end collisions, potentiate driver braking responses, and apply the vehicle's brakes autonomously. Although the proliferation of FCWM technologies can, in many ways, mitigate the necessity of a timely braking response by a driver in an emergency situation, how these systems affect a driver's overall ability to safely, efficiently, and comfortably operate a motor vehicle remains unclear. Exponent conducted a closed-course evaluation of drivers' reactions to an imminent forward collision event while driving an FCWM-equipped vehicle, either with or without a secondary task administered through a hands-free cell phone.
Technical Paper

Efficacy and Usage Patterns for Three Types of Rearview Camera Displays During Backing Up

2012-04-16
2012-01-0287
The usage of rearview camera displays and their effectiveness on drivers' capability to avoid unexpected obstacles during four common backing tasks (i.e., parallel parking, backing between two vehicles, backing down a driveway, backing out of a garage) was evaluated on a closed-course with stationary confederate vehicles, signage, and lane markings. The obstacle consisted of either a stationary or a moving target that appeared to the rear of the test vehicle. Eye movements and vehicle dynamics measurements (i.e., longitudinal acceleration, brake displacement) were recorded, in addition to obstacle hit/avoidance rates. Performance was assessed for four rearview camera (RVC) conditions: small center-stack display (SD), large center-stack display (i.e., navigation screen) (LD), in-mirror display (IMD), and no display (ND).
Journal Article

Mechanisms of Automatic Transmission Console Shift Selection and Driver Egress

2009-04-20
2009-01-0094
Inadvertent vehicle movement incidents, in which a vehicle rolls away after the driver has exited, may occur in automatic transmission vehicles as a result of environmental, vehicular, and/or driver factors. Some explanations have focused on claimed potential malfunctions or design flaws in the vehicle's console shift mechanism or in the automatic transmission itself. However, growing evidence suggests that driver errors unrelated to vehicle design may in fact be the primary cause of many inadvertent vehicle movement incidents. The present research extends previous work on driver gear-shifting behaviors and vehicle egress by conducting more in-depth analyses of data collected by Harley et al. (2008).
Technical Paper

Head Kinematics and Upper Neck Loading During Simulated Low-Speed Rear-End Collisions: A Comparison With Vigorous Activities of Daily Living

2006-04-03
2006-01-0247
Several studies have sought to investigate the biomechanics associated with “whiplash syndrome” by evaluating head kinematics in simulated low-speed rear-end collisions. However, the present study is the first to comprehensively measure head accelerations in six degrees of freedom for the purpose of estimating upper neck loads. In the first phase of the study, nine volunteers were instrumented with a sensor package to measure three-dimensional linear accelerations and angular velocities of the head during rear-end impacts while riding an amusement park bumper car. In the second phase, thirty volunteers were instrumented with the same sensors during selected vigorous activities, including hopping and skipping rope. The linear and rotational head accelerations as well as the calculated upper neck forces and moments for the two groups are presented and compared.
X