Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

The Development of Fuel Economy Test Method for Heavy Duty Diesel Engine Oil (The First HD Engine Test Method and the New JASO DH-2F Category)

2017-03-28
2017-01-0884
This paper reviews the development of the first fuel economy engine test method for heavy duty diesel oil, as well as the new JASO DH-2F category introduced in April 2017 [1][2][3], which adds a fuel economy requirement to the JASO DH-2 requirements in the JASO M355:2015 standard. Recently, better fuel economy is required heavy duty diesel vehicles as well as gasoline vehicles. Therefore, advanced technologies have been applied to improve diesel engines, as well as diesel engine oils and additives, and achieve better fuel economy. However, the Automotive Diesel Engine Oil Standard (JASO M355) applied in Japan as a standard for diesel engine oils does not include any fuel economy requirements.
Technical Paper

Development of Fuel Economy Engine Oil for Heavy Duty Diesel Engine

2015-09-01
2015-01-2034
More stringent emissions regulations, fuel economy standards, and regulations are currently being discussed to help reduce both CO2 and exhaust emissions. Vehicle manufacturers have been developing new engine technologies, such as downsizing and down-speeding with reduced friction loss, improved engine combustion and efficiency, heat loss recycling, power-train friction loss recycling, and reduced power-train friction loss. The use of more efficient fuel economy 5W-30 engine oils for heavy duty commercial vehicles has started to expand since 2009 in Japan as one technological solution to help reduce CO2 emissions. However, fuel economy 5W-30 oils for use in heavy duty vehicles in Europe are mainly based on synthetic oils, which are much expensive than the mineral oils that are predominantly used in Japan.
Technical Paper

Impact of Oil-derived Sulfur and Phosphorus on Diesel NOx Storage Reduction Catalyst - JCAP II Oil WG Report

2006-10-16
2006-01-3312
Emission regulations for diesel-powered vehicles have been gradually tightening. Installation of after-treatment devices such as diesel particulate filters (DPF), NOx storage reduction (NSR) catalysts, and so on is indispensable to satisfy rigorous limits of particulate matter (PM) and nitrogen oxides (NOx). Japan Clean Air Program II Oil Working Group (JCAPII Oil WG) has been investigating the effect of engine oil on advanced diesel after-treatment devices. First of all, we researched the impact of oil-derived ash on continuous regeneration-type diesel particulate filter (CR-DPF), and already reported that the less sulfated ash in oil gave rise to lower pressure drop across CR-DPF [1]. In this paper, impact of oil-derived sulfur and phosphorus on NSR catalyst was investigated using a 4L direct injection common-rail diesel engine with turbo-intercooler. This engine equipped with NSR catalyst meets the Japanese new short-term emission regulations.
Technical Paper

New Four-stroke Diesel Engine Oil Standards for Japanese Market: JASO DH-2 and DL-1

2005-10-24
2005-01-3718
This paper reviews the development of the new four-stroke diesel engine oil standards, JASO DH-2 and DL-1 (JASO M335-05) for Japanese automotive diesel engines equipped with after treatment devices, e.g. Diesel Particulate Filter (DPF) to meet the new long-term emissions regulations. These standards have been introduced in Japan in April 2005. The standards prescribe the minimum performance for engine oils conforming to Japan-made four-stroke diesel engines with aftertreatment devices using low sulfur diesel fuel (less than or equal to 0.005 mass % sulfur). The engine test requirements for these new standards are basically the same as those of the JASO DH-1 automotive diesel engine oil standard (JASO M-355 2000) to meet engine oil performances with soot dispersancy (ASTM D 5967-99), piston detergency (JASO M336-98), thermal and oxidation stability (ASTM Seq. IIIE and IIIF), and anti-wear performance (JASO M354-99).
Technical Paper

Impact of Oil-derived Ash on Continuous Regeneration-type Diesel Particulate Filter - JCAPII Oil WG Report

2004-06-08
2004-01-1887
Impact of oil-derived ash on the pressure drop of continuous regeneration-type diesel particulate filter (CR-DPF) was investigated through 600hrs running test at maximum power point on a 6.9L diesel engine, which meets the Japanese long-term emission regulations enacted in 1998, using approximately 50ppm sulfur content fuel. Sulfated ash content of test oils were varied as 0.96, 1.31, and 1.70 mass%, respectively. During the running test, the exhaust pressure drop through CR-DPF was measured. And after the test, the ventilation resistance through CR-DPF was also evaluated before and after the baking process, which was applied to eliminate the effect of soot accumulated in CR-DPF. The results revealed that the less sulfated ash in oil gave rise to lower pressure drop across CR-DPF. According to microscope examination of the baked DPF, ash was mainly accumulated on the wall surface of CR-DPF, and that seemed to be related to the magnitude of pressure drop caused by ash.
Technical Paper

New Standard for Four-stroke Diesel Engine Oils: JASO DH-1

2001-05-07
2001-01-1970
This paper reviews the development of a new standard for four-stroke diesel engine oils, JASO DH-1 (JASO M355: 2000). This standard was introduced to the market on April 1, 2001. It prescribes the minimum performance for engine oils conforming to four-stroke diesel engines manufactured by Japanese OEMs. This standard is composed of four engine tests and seven bench tests. The engine tests include a piston detergency test (JASO M336: 1998), valve train wear test (JASO M354: 1999), soot dispersancy test (ASTM D 5967-99) and high temperature antioxidation test (ASTM D 5533-97a). The piston detergency test and the valve train wear test were developed in Japan. The bench tests measure hot surface deposits, anti-forming, volatility, anti-corrosion, shear-stability, total base number, and seal compatibility.
X