Refine Your Search

Search Results

Author:
Technical Paper

Impact of a Split-Injection Strategy on Energy-Assisted Compression-Ignition Combustion with Low Cetane Number Sustainable Aviation Fuels

2024-04-09
2024-01-2698
The influence of a split-injection strategy on energy-assisted compression-ignition (EACI) combustion of low-cetane number sustainable aviation fuels was investigated in a single-cylinder direct-injection compression-ignition engine using a ceramic ignition assistant (IA). Two low-cetane number fuels were studied: a low-cetane number alcohol-to-jet (ATJ) sustainable aviation fuel (SAF) with a derived cetane number (DCN) of 17.4 and a binary blend of ATJ with F24 (Jet-A fuel with military additives, DCN 45.8) with a blend DCN of 25.9 (25 vol.% F24, 75 vol.% ATJ). A pilot injection mass sweep (3.5-7.0 mg) with constant total injection mass and an injection dwell sweep (1.5-3.0 ms) with fixed main injection timing was performed. Increasing pilot injection mass was found to reduce cycle-to-cycle combustion phasing variability by promoting a shorter and more repeatable combustion event for the main injection with a shorter ignition delay.
Technical Paper

Investigation of Premixed Fuel Composition and Pilot Reactivity Impact on Diesel Pilot Ignition in a Single-Cylinder Compression Ignition Engine

2023-04-11
2023-01-0282
This work experimentally investigates the impact of premixed fuel composition (methane/ethane, methane/propane, and methane/hydrogen mixtures having equivalent chemical energy) and pilot reactivity (cetane number) on diesel-pilot injection (DPI) combustion performance and emissions, with an emphasis on the pilot ignition delay (ID). To support the experimental pilot ignition delay trends, an analysis technique known as Mixing Line Concept (MLC) was adopted, where the cold diesel surrogate and hot premixed charge are envisioned to mix in a 0-D constant volume reactor to account for DPI mixture stratification. The results show that the dominant effect on pilot ignition is the pilot fuel cetane number, and that the premixed fuel composition plays a minor role. There is some indication of a physical effect on ignition for cases containing premixed hydrogen.
Technical Paper

Exploration of Fuel Property Impacts on the Combustion of Late Post Injections Using Binary Blends and High-Reactivity Ether Bioblendstocks

2023-04-11
2023-01-0264
In this study, the impacts of fuel volatility and reactivity on combustion stability and emissions were studied in a light-duty single-cylinder research engine for a three-injection catalyst heating operation strategy with late post-injections. N-heptane and blends of farnesane/2,2,4,4,6,8,8-heptamethylnonane were used to study the impacts of volatility and reactivity. The effect of increased chemical reactivity was also analysed by comparing the baseline #2 diesel operation with a pure blend of mono-ether components (CN > 100) representative of potential high cetane oxygenated bioblendstocks and a 25 vol.% blend of the mono-ether blend and #2 diesel with a cetane number (CN) of 55. At constant reactivity, little to no variation in combustion performance was observed due to differences in volatility, whereas increased reactivity improved combustion stability and efficiency at late injection timings.
Technical Paper

Combined Impacts of Engine Speed and Fuel Reactivity on Energy-Assisted Compression-Ignition Operation with Sustainable Aviation Fuels

2023-04-11
2023-01-0263
The combined impacts of engine speed and fuel reactivity on energy-assisted compression-ignition (EACI) combustion using a commercial off-the-shelf (COTS) ceramic glow plug for low-load operation werexxz investigated. The COTS glow plug, used as the ignition assistant (IA), was overdriven beyond its conventional operation range. Engine speed was varied from 1200 RPM to 2100 RPM. Three fuel blends consisting of a jet-A fuel with military additives (F24) and a low cetane number alcohol-to-jet (ATJ) sustainable aviation fuel (SAF) were tested with cetane numbers (CN) of 25.9, 35.5, and 48.5. The ranges of engine speed and fuel cetane numbers studied are significantly larger than those in previous studies of EACI or glow-plug assisted combustion, and the simultaneous variation of engine speed and fuel reactivity are unique to this work. For each speed and fuel, a single-injection of fixed mass was used and the start of injection (SOI) was swept for each IA power.
Journal Article

Non-Intrusive Accelerometer-Based Sensing of Start-Of-Combustion in Compression-Ignition Engines

2023-04-11
2023-01-0292
A non-intrusive sensing technique to determine start of combustion for mixing-controlled compression-ignition engines was developed based on an accelerometer mounted to the engine block of a 4-cylinder automotive turbo-diesel engine. The sensing approach is based on a physics-based conceptual model for the signal generation process that relates engine block acceleration to the time derivative of heat release rate. The frequency content of the acceleration and pressure signals was analyzed using the magnitude-squared coherence, and a suitable filtering technique for the acceleration signal was selected based on the result. A method to determine start of combustion (SOC) from the acceleration measurements is presented and validated.
Journal Article

Ignition Sensitivity Analysis for Energy-Assisted Compression-Ignition Operation on Jet Fuels with Varying Cetane Number

2022-03-29
2022-01-0443
Local deposition of thermal energy can be used to assist the combustion process of low cetane number (CN) fuels in compression-ignition engines, here termed energy-assisted compression ignition (EACI). In the current work, a commercial ceramic glow plug, operated beyond its conventional operation range, was used as the ignition assistant (IA) and sensitivity of fuel jet ignition to operation parameters was studied for two fuels using EACI in an optical engine. A design-of-experiments (DoE) study was devised to determine which engine parameters influenced the energy-assisted pilot injection ignition process the most. The DoE was constructed with four parameters: injection pressure, injected mass, injection timing, and ignition assistant temperature. The fuels used were F24 (Jet-A with military additives) with a cetane number of 48 and a cetane number 35 fuel mixture consisting of 60% F24 and 40% of an alcohol-to-jet fuel (ATJ), blended on a volumetric basis.
Technical Paper

Accelerometer-Based Estimation of Combustion Features for Engine Feedback Control of Compression-Ignition Direct-Injection Engines

2020-04-14
2020-01-1147
An experimental investigation of non-intrusive combustion sensing was performed using a tri-axial accelerometer mounted to the engine block of a small-bore high-speed 4-cylinder compression-ignition direct-injection (CIDI) engine. This study investigates potential techniques to extract combustion features from accelerometer signals to be used for cycle-to-cycle engine control. Selection of accelerometer location and vibration axis were performed by analyzing vibration signals for three different locations along the block for all three of the accelerometer axes. A magnitude squared coherence (MSC) statistical analysis was used to select the best location and axis. Based on previous work from the literature, the vibration signal filtering was optimized, and the filtered vibration signals were analyzed. It was found that the vibration signals correlate well with the second derivative of pressure during the initial stages of combustion.
Journal Article

Establishing Thermal Stability in an Optically-Accessible CIDI Engine

2020-04-14
2020-01-0789
Optically-accessible engines are a key tool for the study of sprays, mixing, and ignition and combustion phenomena in internal combustion (IC) engines. Due to their construction, they are typically operated for limited durations, resulting in significant thermal transients in the in-cylinder surface temperatures and cycle-to-cycle in-cylinder gas temperature. This makes collection of highly repeatable data difficult and can introduce considerable uncertainty in the in-cylinder thermal conditions. In this paper, rigorous analyses of transient in-cylinder boundary conditions and in-cylinder gas temperature were performed in an optically-accessible compression-ignition engine. Piston surface thermometry, in-cylinder pressure measurements, and in-cylinder gas thermometry were employed to determine the engine warmup time required to reach a quasi-steady thermal state for motored operation over a range of intake air temperatures and pressures from 300-420 K and 100-300 kPa, respectively.
Technical Paper

Optical Investigation of the Impact of Pilot Ratio Variations on Natural Gas Diesel Dual-Fuel Combustion

2019-04-02
2019-01-1159
Experiments were performed on a small-bore optically accessible engine to investigate diesel pilot ignition (DPI) and reactivity controlled compression ignition (RCCI) dual-fuel combustion strategies with direct injection of natural gas and diesel. Parametric variations of pilot ratio were performed. Natural luminosity and OH chemiluminescence movies of the combustion processes were captured at 28.8 and 14.4 kHz, respectively. These data were used to create ignition maps, which aided in comparing the propagation modes of the two combustion strategies. Lower pilot ratios resulted in lower initial heat release rates, and the initial ignition sites were generally smaller and less luminous; for increased pilot ratios the initial portion of the heat release was larger, and the ignition sites were large and bright. Comparisons between diesel pilot ignition and reactivity controlled compression ignition showed differences in combustion propagation mechanisms.
Journal Article

Study of the Deep-Bed Filtration Using Pore Filtration Model (PFM)

2018-04-03
2018-01-0956
To meet stringent emissions regulations, filtration devices are often used in engine exhaust systems to reduce particulate mass (PM) and particulate number (PN). Diesel particulate filters (DPFs) are a well-established means of reducing PM from diesel engines to meet emissions regulations. New emissions regulations will most likely require a similar technology on gasoline engines with direct injection, gasoline particulate filters (GPFs). Due to differences in the exhaust and particulate characteristics, the design and operation of GPFs and DPFs differ. In a DPF filtration is dominated by the buildup of a soot cake. Whereas in a GPF, much of the soot is trapped inside the porous substrate, or filter wall, where deep-bed filtration is dominant. Thus, an accurate model describing the porous filtration properties of GPF substrates is desired. The pore filtration model (PFM) was developed to more accurately model the deep-bed filtration process that occurs in a GPF.
Journal Article

Effects of Fuel Chemistry and Spray Properties on Particulate Size Distributions from Dual-Fuel Combustion Strategies

2017-03-28
2017-01-1005
The effect of direct-injected fuel on particle size distributions (PSDs) of particulate matter emitted from dual-fuel combustion strategies was investigated. The PSD data were acquired from a light-duty single-cylinder diesel engine operated using conventional diesel combustion (CDC) and two diesel/natural gas dual-fuel combustion strategies. Three different direct-injection (DI) fuels (diesel, 2,6,10-trimethyldodecane, and a primary reference fuel blend) and two different injector nozzles were studied. The DI fuels were chosen to have similar energy and ignition characteristics (heat of combustion and cetane number) but different physical and chemical properties (volatility, aromatics %, viscosity, density). The two nozzles (with different orifice diameter and spray angle) allowed a wide range in DI fuel quantity for the dual-fuel combustion strategies.
Journal Article

Effects of Fuel Physical Properties on Auto-Ignition Characteristics in a Heavy Duty Compression Ignition Engine

2015-04-14
2015-01-0952
The effect of fuel physical properties on the ignition and combustion characteristics of diesel fuels was investigated in a heavy-duty 2.52 L single-cylinder engine. Two binary component fuels, one comprised of farnesane (FAR) and 2,2,4,4,6,8,8-heptamethylnonane (HMN), and another comprised of primary reference fuels (PRF) for the octane rating scale (i.e. n-heptane and 2,2,4-trimethylpentane), were blended to match the cetane number (CN) of a 45 CN diesel fuel. The binary mixtures were used neat, and blended at 25, 50, and 75% by volume with the baseline diesel. Ignition delay (ID) for each blend was measured under identical operating conditions. A single injection was used, with injection timing varied from −12.5 to 2.5 CAD. Injection pressures of 50, 100, and 150 MPa were tested. Observed IDs were consistent with previous work done under similar conditions with diesel fuels. The shortest IDs were seen at injection timings of −7.5 CAD.
Journal Article

Comparison of Particulate Size Distributions from Advanced and Conventional Combustion - Part I: CDC, HCCI, and RCCI

2014-04-01
2014-01-1296
Comparison of particulate size distribution measurements from different combustion strategies was conducted with a four-stroke single-cylinder diesel engine. Measurements were performed at four different load-speed points with matched combustion phasing. Particle size distributions were measured using a scanning mobility particle sizer (SMPS). To study the influence of volatile particles, measurements were performed with and without a volatile particle remover (thermodenuder) at low and high dilution ratios. The use of a single testing platform enables quantitative comparison between combustion strategies since background sources of particulate are held constant. A large number of volatile particles were present under low dilution ratio sample conditions for most of the operating conditions. To avoid the impact of volatile particles, comparisons were made based on the high dilution ratio measurements with the thermodenuder.
Technical Paper

Design & Evaluation of an Exhaust Filtration Analysis (EFA) System

2014-04-01
2014-01-1558
The Diesel Exhaust Filtration Analysis System (DEFA) developed at the University of Wisconsin Madison was modified to perform fundamental filtration experiments using particulate matter (PM) generated by a spark-ignition direct-injection (SIDI) engine fueled with gasoline. The newly modified system, termed the Exhaust Filtration Analysis (EFA) system, enables small-scale fundamental studies of wall-flow filtration processes. A scanning mobility particle sizer (SMPS) was used to characterize running conditions with unique particle size distributions (PSDs). The SMPS and an engine exhaust particle sizer (EEPS) were used to simultaneously measure the PSD downstream of the EFA and the real-time particulate emissions from the SIDI engine, to determine the evolution of filtration efficiency during filter loading. Corrections were developed for each running condition to compare measured PSDs between the EEPS and the SMPS in the raw, as well as, filtered exhaust stream.
Technical Paper

Detailed Morphological Properties of Nanoparticles from Gasoline Direct Injection Engine Combustion of Ethanol Blends

2013-09-08
2013-24-0185
Detailed properties of particulate matter (PM) emissions from a gasoline direct injection (GDI) engine were analyzed in terms of size, morphology, and nanostructures, as gasoline and its ethanol blend E20 were used as a fuel. PM emissions were sampled from a 0.55L single-cylinder GDI engine by means of a scanning mobility particle sizer (SMPS) for size measurements and a self-designed thermophoretic sampling device for the subsequent analyses of size, morphology and nanostructures using a transmission electron microscope (TEM). The particle sizes were evaluated with variations of air-fuel equivalence ratio and fuel injection timing. The most important result from the SMPS measurements was that the number of nucleation-mode nanoparticles (particularly those smaller than 10 - 15 nm) increased significantly as the fuel injection timing was advanced to the end-of-injection angle of 310° bTDC.
Journal Article

Simultaneous Measurements of In-Cylinder Temperature and Velocity Distribution in a Small-Bore Diesel Engine Using Thermographic Phosphors

2013-04-08
2013-01-0562
In-cylinder temperature and velocity fields were quantified simultaneously in an optically accessible, small-bore diesel engine. A technique utilizing luminescence from Pr:YAG phosphor particles aerosolized into the intake air was used for temperature determination while particle image velocimetry (PIV) on the aforementioned phosphor particles was used to simultaneously measure the velocity field. The temperature and velocity fields were measured at different points throughout the compression stroke up to −30 CAD. Systematic interference due to emission from the piston window reduced the accuracy of the measurements at crank angles closer to TDC. Single-shot simultaneous measurements of the temperature and velocity fields were made using both unheated and heated intake temperatures. In both cases, cycle-to-cycle variations in the temperature and velocity fields were visible.
Technical Paper

Effect of Equivalence Ratio on the Particulate Emissions from a Spark-Ignited, Direct-Injected Gasoline Engine

2013-04-08
2013-01-1560
The effect of equivalence ratio on the particulate size distribution (PSD) in a spark-ignited, direct-injected (SIDI) engine was investigated. A single-cylinder, four-stroke, spark-ignited direct-injection engine fueled with certification gasoline was used for the measurements. The engine was operated with early injection during the intake stroke. Equivalence ratio was swept over the range where stable combustion was achieved. Throughout this range combustion phasing was held constant. Particle size distributions were measured as a function of equivalence ratio. The data show the sensitivity of both engine-out particle number and particle size to global equivalence ratio. As equivalence ratio was increased a larger fraction of particles were due to agglomerates with diameters ≻ 100 nm. For decreasing equivalence ratio smaller particles dominate the distribution. The total particle number and mass increased non-linearly with increasing equivalence ratio.
Technical Paper

Effects of Cetane Number on Jet Fuel Combustion in a Heavy-Duty Compression Ignition Engine at High Load

2011-04-12
2011-01-0335
The effects of jet fuel properties on compression ignition engine operation were investigated under high-load conditions for jet fuels with varying cetane number. A single-cylinder oil-test engine (SCOTE) with 2.44 L displacement was used to test a baseline #2 diesel fuel with a cetane number of 43, a Jet-A fuel with a cetane number of 47, and two mixtures of Jet-A and a Fishcer-Tropsch JP-8 with cetane numbers of 36 and 42, respectively. The engine was operated under high-load conditions corresponding to traditional diesel combustion, using a single injection of fuel near TDC. The fuels were tested using two different intake camshafts with closing times of -143 and -85 CAD BTDC. Injection timing sweeps were performed over a range of injection timings near TDC for each camshaft. The apparent net heat release rate (AHRR) data showed an increase in the premixed burn magnitude as cetane number decreased in agreement with previous work.
Journal Article

Two-Wavelength PLIF Diagnostic for Temperature and Composition

2008-04-14
2008-01-1067
Laser excitation wavelengths for two-line planar laser-induced fluorescence (PLIF) of 3-pentanone have been optimized for simultaneous imaging of temperature and composition under engine-relevant conditions. Validation of the diagnostic was performed in a motored optical IC engine seeded homogeneously with 3-pentanone. PLIF measurements of the uniform mixture during the compression stroke were used to measure the average temperature and to access the random uncertainty in the measurements. To determine the accuracy of the temperature measurements, experimental average temperatures were compared to values computed assuming isentropic compression and to the output of a tuned 1-D engine simulation. The comparison indicated that the absolute accuracy of the temperature measurements is better than ±5%. Probability density functions (PDFs) calculated from the single-shot images were used to estimate the precision of the measurements.
Technical Paper

Determination of Flame-Front Equivalence Ratio During Stratified Combustion

2003-03-03
2003-01-0069
Combustion under stratified operating conditions in a direct-injection spark-ignition engine was investigated using simultaneous planar laser-induced fluorescence imaging of the fuel distribution (via 3-pentanone doped into the fuel) and the combustion products (via OH, which occurs naturally). The simultaneous images allow direct determination of the flame front location under highly stratified conditions where the flame, or product, location is not uniquely identified by the absence of fuel. The 3-pentanone images were quantified, and an edge detection algorithm was developed and applied to the OH data to identify the flame front position. The result was the compilation of local flame-front equivalence ratio probability density functions (PDFs) for engine operating conditions at 600 and 1200 rpm and engine loads varying from equivalence ratios of 0.89 to 0.32 with an unthrottled intake. Homogeneous conditions were used to verify the integrity of the method.
X