Refine Your Search

Topic

Search Results

Technical Paper

An Ultra-Light Heuristic Algorithm for Autonomous Optimal Eco-Driving

2023-04-11
2023-01-0679
Connected autonomy brings with it the means of significantly increasing vehicle Energy Economy (EE) through optimal Eco-Driving control. Much research has been conducted in the area of autonomous Eco-Driving control via various methods. Generally, proposed algorithms fall into the broad categories of rules-based controls, optimal controls, and meta-heuristics. Proposed algorithms also vary in cost function type with the 2-norm of acceleration being common. In a previous study the authors classified and implemented commonly represented methods from the literature using real-world data. Results from the study showed a tradeoff between EE improvement and run-time and that the best overall performers were meta-heuristics. Results also showed that cost functions sensitive to the 1-norm of acceleration led to better performance than those which directly minimize the 2-norm.
Technical Paper

Experimental Validation of Eco-Driving and Eco-Heating Strategies for Connected and Automated HEVs

2021-04-06
2021-01-0435
This paper presents experimental results that validate eco-driving and eco-heating strategies developed for connected and automated vehicles (CAVs). By exploiting vehicle-to-infrastructure (V2I) communications, traffic signal timing, and queue length estimations, optimized and smoothed speed profiles for the ego-vehicle are generated to reduce energy consumption. Next, the planned eco-trajectories are incorporated into a real-time predictive optimization framework that coordinates the cabin thermal load (in cold weather) with the speed preview, i.e., eco-heating. To enable eco-heating, the engine coolant (as the only heat source for cabin heating) and the cabin air are leveraged as two thermal energy storages. Our eco-heating strategy stores thermal energy in the engine coolant and cabin air while the vehicle is driving at high speeds, and releases the stored energy slowly during the vehicle stops for cabin heating without forcing the engine to idle to provide the heating source.
Journal Article

Tanker Truck Rollover Avoidance Using Learning Reference Governor

2021-04-06
2021-01-0256
Tanker trucks are commonly used for transporting liquid material including chemical and petroleum products. On the one hand, tanker trucks are susceptible to rollover accidents due to the high center of gravity when they are loaded and due to the liquid sloshing effects when the tank is partially filled. On the other hand, tanker truck rollover accidents are among the most dangerous vehicle crashes, frequently resulting in serious to fatal driver injuries and significant property damage, because the liquid cargo is often hazardous and flammable. Therefore, effective schemes for tanker truck rollover avoidance are highly desirable and can bring a considerable amount of societal benefit. Yet, the development of such schemes is challenging, as tanker trucks can operate in various environments and be affected by manufacturing variability, aging, degradation, etc. This paper considers the use of Learning Reference Governor (LRG) for tanker truck rollover avoidance.
Technical Paper

Engine and Aftertreatment Co-Optimization of Connected HEVs via Multi-Range Vehicle Speed Planning and Prediction

2020-04-14
2020-01-0590
Connected vehicles (CVs) have situational awareness that can be exploited for control and optimization of the powertrain system. While extensive studies have been carried out for energy efficiency improvement of CVs via eco-driving and planning, the implication of such technologies on the thermal responses of CVs (including those of the engine and aftertreatment systems) has not been fully investigated. One of the key challenges in leveraging connectivity for optimization-based thermal management of CVs is the relatively slow thermal dynamics, which necessitate the use of a long prediction horizon to achieve the best performance. Long-term prediction of the CV speed, unlike the short-range prediction based on vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communications-based information, is difficult and error-prone.
Technical Paper

Analysis of Multistage Hybrid Powertrains Using Multistage Mixed-Integer Trajectory Optimization

2020-04-14
2020-01-0274
Increasingly complex hybrid electric vehicle (HEV) powertrains are being developed to address the growing stringency of emissions regulations, fuel economy standards and drivability/performance requirements. Early in their design process, it is desirable to rapidly evaluate powertrain architectures and components using simulation models before committing to costly physical prototyping. However, HEV powertrains have multiple controlled degrees of freedom, such as power split, engine on/off and gear selection, the operation of which needs to be pre-determined before a meaningful performance evaluation can be carried out. In this paper, we describe a multistage mixed integer trajectory optimization methodology that allows design engineers to rapidly perform performance analyses of complex powertrains. The methodology can generate optimal input signals for both continuous (engine torque or motor power) and discrete (engine on/off or gear selection) degrees of freedom for a given scenario.
Technical Paper

Vehicle Velocity Prediction and Energy Management Strategy Part 2: Integration of Machine Learning Vehicle Velocity Prediction with Optimal Energy Management to Improve Fuel Economy

2019-04-02
2019-01-1212
An optimal energy management strategy (Optimal EMS) can yield significant fuel economy (FE) improvements without vehicle velocity modifications. Thus it has been the subject of numerous research studies spanning decades. One of the most challenging aspects of an Optimal EMS is that FE gains are typically directly related to high fidelity predictions of future vehicle operation. In this research, a comprehensive dataset is exploited which includes internal data (CAN bus) and external data (radar information and V2V) gathered over numerous instances of two highway drive cycles and one urban/highway mixed drive cycle. This dataset is used to derive a prediction model for vehicle velocity for the next 10 seconds, which is a range which has a significant FE improvement potential. This achieved 10 second vehicle velocity prediction is then compared to perfect full drive cycle prediction, perfect 10 second prediction.
Technical Paper

Vehicle Velocity Prediction and Energy Management Strategy Part 1: Deterministic and Stochastic Vehicle Velocity Prediction Using Machine Learning

2019-04-02
2019-01-1051
There is a pressing need to develop accurate and robust approaches for predicting vehicle speed to enhance fuel economy/energy efficiency, drivability and safety of automotive vehicles. This paper details outcomes of research into various methods for the prediction of vehicle velocity. The focus is on short-term predictions over 1 to 10 second prediction horizon. Such short-term predictions can be integrated into a hybrid electric vehicle energy management strategy and have the potential to improve HEV energy efficiency. Several deterministic and stochastic models are considered in this paper for prediction of future vehicle velocity. Deterministic models include an Auto-Regressive Moving Average (ARMA) model, a Nonlinear Auto-Regressive with eXternal input (NARX) shallow neural network and a Long Short-Term Memory (LSTM) deep neural network. Stochastic models include a Markov Chain (MC) model and a Conditional Linear Gaussian (CLG) model.
Technical Paper

Control of Gear Ratio and Slip in Continuously Variable Transmissions: A Model Predictive Control Approach

2017-03-28
2017-01-1104
The efficiency of power transmission through a Van Doorne type Continuously Variable Transmission (CVT) can be improved by allowing a small amount of relative slip between the engine and driveline side pulleys. However, excessive slip must be avoided to prevent transmission wear and damage. To enable fuel economy improvements without compromising drivability, a CVT control system must ensure accurate tracking of the gear ratio set-point while satisfying pointwise-in-time constraints on the slip, enforcing limits on the pulley forces, and counteracting driveline side and engine side disturbances. In this paper, the CVT control problem is approached from the perspective of Model Predictive Control (MPC). To develop an MPC controller, a low order nonlinear model of the CVT is established. This model is linearized at a selected operating point, and the resulting linear model is extended with extra states to ensure zero steady-state error when tracking constant set-points.
Technical Paper

Emissions Modeling of a Light-Duty Diesel Engine for Model-Based Control Design Using Multi-Layer Perceptron Neural Networks

2017-03-28
2017-01-0601
The development of advanced model-based engine control strategies, such as economic model predictive control (eMPC) for diesel engine fuel economy and emission optimization, requires accurate and low-complexity models for controller design validation. This paper presents the NOx and smoke emissions modeling of a light duty diesel engine equipped with a variable geometry turbocharger (VGT) and a high pressure exhaust gas recirculation (EGR) system. Such emission models can be integrated with an existing air path model into a complete engine mean value model (MVM), which can predict engine behavior at different operating conditions for controller design and validation before physical engine tests. The NOx and smoke emission models adopt an artificial neural network (ANN) approach with Multi-Layer Perceptron (MLP) architectures. The networks are trained and validated using experimental data collected from engine bench tests.
Technical Paper

Design Environment for Nonlinear Model Predictive Control

2016-04-05
2016-01-0627
Model Predictive Control (MPC) design methods are becoming popular among automotive control researchers because they explicitly address an important challenge faced by today’s control designers: How does one realize the full performance potential of complex multi-input, multi-output automotive systems while satisfying critical output, state and actuator constraints? Nonlinear MPC (NMPC) offers the potential to further improve performance and streamline the development for those systems in which the dynamics are strongly nonlinear. These benefits are achieved in the MPC framework by using an on-line model of the controlled system to generate the control sequence that is the solution of a constrained optimization problem over a receding horizon.
Journal Article

Launch Performance Optimization of GTDI-DCT Powertrain

2015-04-14
2015-01-1111
A direct trajectory optimization approach is developed to assess the capability of a GTDI-DCT Powertrain, with a Gasoline Turbocharged Direct Injection (GTDI) engine and Dual Clutch Transmission (DCT), to satisfy stringent drivability requirements during launch. The optimization is performed directly on a high fidelity black box powertrain model for which a single simulation of a launch event takes about 8 minutes. To address this challenging problem, an efficient parameterization of the control trajectory using Gaussian kernel functions and a Mesh Adaptive Direct Search optimizer are exploited. The results and observations are reported for the case of clutch torque optimization for launch at normal conditions, at high altitude conditions and at non-zero grade conditions. The results and observations are also presented for the case of simultaneous optimization of multiple actuator trajectories at normal conditions.
Technical Paper

A Practical Time-Domain Approach to Controller Design and Calibration for Applications in Automotive Industry

2011-04-12
2011-01-0693
This paper summarizes a systematic approach to control of nonlinear automotive systems exposed to fast transients. This approach is based on a combined application of hardware characterization, which inverts nonlinearities, and conventional Proportional-plus-Integral-plus-Derivative (PID) control. The approach renders the closed-loop system dynamics more transparent and simplifies the controller design and calibration for applications in automotive industry. The authors have found this approach effective in presenting and teaching PID controller design and calibration guidelines to automotive engineering audience, who at times may not have formal training in controls but need to understand the development and calibration process of simple controllers.
Technical Paper

Control-oriented Reduced-order Models for Urea Selective Catalytic Reduction Systems Using a Physics-based Approach

2011-04-12
2011-01-1326
Urea-selective catalytic reduction (SCR) after-treatment systems are used for reducing oxides of nitrogen (NOx) emissions in medium and heavy duty diesel vehicles. This paper addresses control-oriented modeling, starting from first-principles, of SCR after-treatment systems. Appropriate simplifications are made to yield governing equations of the Urea-SCR. The resulting nonlinear partial differential equations (PDEs) are discretized and linearized to yield a family of linear finite-dimensional state-space models of the SCR at different operating points. It is further shown that this family of models can be reduced to three operating regions. Within each region, parametric dependencies of the system on physical mechanisms are derived. Further model reduction is shown to be possible in each of the three regions resulting in a second-order linear model with sufficient accuracy.
Journal Article

An Adaptive Proportional Integral Control of a Urea Selective Catalytic Reduction System based on System Identification Models

2010-04-12
2010-01-1174
For urea Selective Catalytic Reduction (SCR) systems, adaptive control is of interest to provide a capability of maintaining high NOx conversion efficiency and low ammonia slip in the presence of uncertainties in the system. In this paper, the dynamics of the urea SCR system are represented by a control-oriented model which is based on a linear transfer function, with parameters dependent on engine operating conditions. The parameters are identified from input-output data generated by a high fidelity full chemistry model of the urea SCR system. The use of the full chemistry model facilitated the representation of the dynamics of stored ammonia (not a directly measurable parameter) as well as post SCR NOx and ammonia slip. A closed-loop Proportional-plus-Integral (PI) controller was first designed using the estimate of stored ammonia as a feedback signal.
Technical Paper

In-Vehicle Ambient Condition Sensing Based on Wireless Internet Access

2010-04-12
2010-01-0461
Increasing electronics content, growing computing power, and proliferation of opportunities for information connectivity (through improved sensors, GPS, road and traffic information systems, wireless internet access, vehicle-to-vehicle communication, etc.) are technology trends which can significantly transform and impact future automotive vehicle's control and diagnostic strategies. One aspect of the increasing vehicle connectivity is access to ambient and road condition information, such as ambient temperature, ambient pressure, humidity, % cloudiness, visibility, cloud ceiling, precipitation, rain droplet size, wind speed, and wind direction based on wireless internet access. The paper discusses the potential opportunities made available through wireless communication between the vehicle and the internet.
Technical Paper

Constrained Control of UAVs Using Adaptive Anti-windup Compensation and Reference Governors

2009-11-10
2009-01-3097
Gliders can climb to substantial altitudes without employing any on-board energy resources but using proper piloting skills to utilize rising air currents called thermals. Recent experiments on small Unmanned Aerial Vehicles (UAVs) indicate a significant potential to increase both the flight velocity and the range of gliders by means of such maneuvers. In these experiments the velocity to approach a thermal has been recognized as a critical performance factor, and is chosen as the controlled variable. Accurate longitudinal controllers are required to track the optimal flight trajectories generated using path planning algorithms. These controllers are challenged by the presence of uncertain and time-varying aircraft dynamics, gust disturbances, and control actuator limitations.
Journal Article

Application of Adaptive Kalman Filter for Estimation of Power Train Variables

2008-04-14
2008-01-0585
The paper presents the estimator design procedures for automotive power train systems based on the adaptive Kalman filter. The Kalman filter adaptation is based on a simple and robust algorithm that detects sudden changes of power train variables. The adaptive Kalman filter has been used to estimate the SI engine load torque and air mass flow, and also the tire traction force and road condition. The presented experimental results indicate that proposed estimators are characterized by favorable response speeds and good noise suppression abilities.
Technical Paper

Hybrid Electric Vehicle Energy Management Using Game Theory

2008-04-14
2008-01-1317
The topic of energy management in Hybrid Electric Vehicles (HEVs) has received a great deal of recent attention. Various methods have been proposed to develop algorithms which manage energy flows within HEVs so that to optimally exploit energy storage capability of the battery and reduce fuel consumption while maintaining battery State of Charge. In addition, to the rule-based approaches, systematic optimal control methods based on deterministic and stochastic dynamic programming have been explored for HEV energy management optimization. In this paper, another novel framework based on the application of game theory is proposed, in which the HEV operation is viewed as a non-cooperative game between the driver and the powertrain.
Technical Paper

Modeling and Analysis of Engine Torque Modulation for Shift Quality Improvement

2006-04-03
2006-01-1073
An engine torque modulation methodology is developed for use in engines equipped with electronic throttle control, ETC. It is shown through simulation that an engine with ETC is capable of following a transmission torque modulation command that includes a linearly increasing torque during the torque phase, a torque reduction during the inertia phase and a post-shift torque increase. It is also shown that such a strategy can be used to minimize the transmission output torque variation during a shift. The impact of engine indicated mean effective pressure, IMEP, variation on vehicle longitudinal acceleration is analyzed using Monte-Carlo simulation. It is shown that the IMEP induced variation in the vehicle acceleration is largely due to end of shift engine torque output timing errors. It is then recommended that during a shift the engine IMEP variation be held to a one-sigma variation of three percent or less.
Technical Paper

A Phenomenological Control Oriented Lean NOx Trap Model

2003-03-03
2003-01-1164
Lean NOx Trap (LNT) is an aftertreatment device typically used to reduce oxides of nitrogen (NOx) emissions for a lean burn engine. NOx is stored in the LNT during the lean operation of an engine. When the air-fuel ratio becomes rich, the stored NOx is released and catalytically reduced by the reductants such as CO, H2 and HC. Tailpipe NOx emissions can be significantly reduced by properly modulating the lean (storage) and rich (purge) periods. A control-oriented lumped parameter model is presented in this paper. The model captures the key steady state and transient characteristics of an LNT and includes the effects of the important engine operating parameters. The model can be used for system performance evaluation and control strategy development.
X