Refine Your Search

Search Results

Author:
Viewing 1 to 8 of 8
Journal Article

Advanced High-Strength Steel (AHSS) Performance Level Definitions and Targets

2018-04-03
2018-01-0629
A novel performance classification system has been developed for advanced high-strength steel (AHSS). This system considers intrinsic global and local formability parameters derived from standard uniaxial tension tests and is applicable to all current and future AHSS materials. The overall AHSS performance index (P.I.) is defined herein as the product of the ultimate tensile strength (UTS) and the formability index (F.I.), where F.I. is an intermediate strain value between the true uniform strain and the true fracture strain (TFS). Target P.I. values are defined for First Generation AHSS (GEN1), Improved First Generation AHSS (GEN1+), Third Generation AHSS (GEN3), and AHSS Future. Performance is further distinguished by local, balanced, and global formability characteristics and by relative yield strength (yield-to-tensile ratio). Additionally, the influence of tension test specimen geometry and fracture area measurement method on the TFS value was explored.
Journal Article

Practical Application of the Hole Expansion Test

2017-03-28
2017-01-0306
Until now the hole expansion ratio has been generally regarded as a relative “local formability” parameter with limited application to edge-cracking analysis and prediction. In this study a constrained statistical test data analysis methodology is introduced, where the lower-bound hole expansion ratio is the basis for three practical edge-cracking failure criteria. The Maximum Edge Stretch Criterion is directly compatible with CAE simulation. The Edge Thinning Limit Criterion and the Critical Thickness Criterion are more useful in field work and post mortem laboratory failure analysis. Two case studies are described, where hole expansion test data are used to analyze edge cracking of Advanced High Strength Steel (AHSS) in real-world automotive seating applications.
Technical Paper

An Indirect Method to Determine Friction Coefficient in the OSU Punch Stretch Test

2014-04-01
2014-01-0987
An indirect method to determine friction coefficient under punch stretching conditions has been developed. The methodology involves correlation of experimental draw-in measurements to FEA predictions for a range of assumed friction coefficients. Initial evaluation with a ferritic stainless steel (SS 439) shows that the proposed indirect method to determine the effective friction coefficient during punch stretching is feasible. Friction coefficient (μ) estimate based on the indirect method was 0.15 for the sample with residual mill oil (dry), 0.12 with excess mill oil (wet), and 0.03 with polyethylene sheets between the sample blank and tooling. The importance of prescribing accurate material hardening behavior beyond uniform elongation to obtain good correlation between simulation and experimental punch loads and to better tune the model is highlighted in the paper.
Technical Paper

The Influence of Edge Preparation Method on the Hole Expansion Performance of Automotive Sheet Steels

2013-04-08
2013-01-1167
Edge stretching performance was assessed with the conical-punch hole expansion test for a variety of automotive sheet steels. Included were: an ultra-low carbon IF steel, a dual-phase advanced high strength steel (DP 980), an austenitic stainless steel (204), an annealed martensitic stainless steel (410 AN), and a ferritic stainless steel (429 MOD). Various hole fabrication methods were considered: conventional piercing (shearing), water-jet cutting and laser cutting. With pierced holes, no effect of shearing clearance on the hole expansion ratio (HER) was observed. The dual-phase steel and the austenitic stainless steel exhibited relatively low hole expansion performance in the pierced-hole condition (HER ≤ 50%). However, these materials demonstrated tremendous potential for improvement with alternative edge preparation methods, and both benefitted more from laser cutting than from water-jet cutting.
Technical Paper

Effects of Strain Rate and Temperature on the Work Hardening Behavior of High Strength Sheet Steels

2003-03-03
2003-01-0516
The influence of strain rate on work hardening behavior has been determined for a variety of high strength steels including high-strength low-alloy (HSLA), dual phase (DP), and transformation-induced plasticity (TRIP) steels. Tensile testing was performed at true strain rates of 10-3 s-1 and 1.0 s-1 to represent laboratory testing conditions and dynamic press-forming operations, respectively. Work hardening behavior is described by the conventional strain hardening exponent (n-value), the work hardening rate (dσ/dε), and the Shape-Tilt-Strength (STS) equation as an alternative approach. The effects of deformation temperature and temperature rise during deformation (adiabatic heating) on work hardening are also evaluated. Increasing the strain rate generally increases the work hardening rate at smaller strains, which may contribute to a broader initial strain distribution in press forming.
Technical Paper

Springback as a Function of Strength and Thickness Variability in High Strength Sheet Steels

2000-10-03
2000-01-2658
Springback in sheet metal forming is becoming a very troublesome issue with the increased use of high strength steels in automobiles. The current trend for many applications is to reduce vehicle weight by down-gaging, that is, substituting higher strength, thinner steels for lower strength, thicker steels. The primary springback concern in sheet metal forming is variation in springback, rather than the magnitude of the springback. Even large springback can be accommodated if it can be consistently predicted. Variations in springback are caused by variations in mechanical properties and gage, and by fluctuations in the conditions of the forming process. This paper addresses the expected springback issues associated with the application of high strength sheet steels in light of strength and thickness uniformity. A simple expression is used to show how variations in yield strength and gage may be expected to influence springback in sheet metal forming.
Technical Paper

Dimensional Stability and Residual Stress Relief of Post-Forming Nitrided Sheet Steel

2000-03-06
2000-01-0313
Ultra-low carbon sheet steel with excess stabilizing elements such as titanium, niobium and vanadium can be strengthened via internal nitriding in an ammonia/nitrogen atmosphere. Strength can be imparted to the sheet either in coil form in an open coil annealing (OCA) furnace or after forming in a batch-type component nitriding process. The latter strengthening method presents several advantages over conventional high strength steels including lower forming loads and increased part complexity (enhanced formability). To illustrate the effects of the nitriding thermal cycle on the dimensional stability and residual stress levels of formed parts, a post-forming nitrided steel was compared to a conventional commercially produced high-strength low-alloy (HSLA) steel in laboratory simulations. A slit-ring technique was used to measure residual stresses and dimensional stability. The residual stress relief as a function of nitriding time was measured for various nitriding temperatures.
Technical Paper

Effects of Sheet Thickness on the Coefficient of Friction Determined by the Draw Bead Simulator (DBS) Test

1999-03-01
1999-01-0998
This study addresses the effects of sheet metal thickness on the frictional forces which develop when a strip of sheet metal is pulled through a draw bead configuration. This situation is represented by the draw bead simulator (DBS) test. Sheet steels of various thicknesses in the range 0.5-1.5 mm (0.02-0.06 inches) were used for the analysis. Generally, the coefficient of friction decreases with increasing sheet thickness when the conventional expression for coefficient of friction (μ) is used. A correction factor is proposed which normalizes the μ-value over a range of thicknesses. Also, suggested uses, limitations and improvements for the device are made.
X