Criteria

Text:
Author:
Display:

Results

Viewing 1 to 7 of 7
2017-03-28
Technical Paper
2017-01-1457
Jingwen Hu, Nichole Ritchie Orton, Rebekah Gruber, Ryan Hoover, Kevin Tribbett, Jonathan Rupp, Dave Clark, Risa Scherer, Matthew Reed
Abstract Among all the vehicle rollover test procedures, the SAE J2114 dolly rollover test is the most widely used. However, it requires the test vehicle to be seated on a dolly with a 23° initial angle, which makes it difficult to test a vehicle over 5,000 kg without a dolly design change, and repeatability is often a concern. In the current study, we developed and implemented a new dynamic rollover test methodology that can be used for evaluating crashworthiness and occupant protection without requiring an initial vehicle angle. To do that, a custom cart was designed to carry the test vehicle laterally down a track. The cart incorporates two ramps under the testing vehicle’s trailing-side tires. In a test, the cart with the vehicle travels at the desired test speed and is stopped by a track-mounted curb.
2016-04-05
Technical Paper
2016-01-1491
Eunjoo Hwang, Jason Hallman, Katelyn Klein, Jonathan Rupp, Matthew Reed, Jingwen Hu
Abstract Current finite element (FE) human body models (HBMs) generally only represent young and mid-size male occupants and do not account for body shape and composition variations among the population. Because it generally takes several years to build a whole-body HBM, a method to rapidly develop HBMs with a wide range of human attributes (size, age, obesity level, etc.) is critically needed. Therefore, the objective of this study was to evaluate the feasibility of using a mesh morphing method to rapidly generate skeleton and whole-body HBMs based on statistical geometry targets developed previously. THUMS V4.01 mid-size male model jointly developed by Toyota Motor Corporation and Toyota Central R&D Labs was used in this study as the baseline HBM to be morphed. Radial basis function (RBF) was used to morph the baseline model into the target geometries.
2016-04-05
Journal Article
2016-01-0316
Dorin Drignei, Zissimos Mourelatos, Ervisa Kosova, Jingwen Hu, Matthew Reed, Jonathan Rupp, Rebekah Gruber, Risa Scherer
Abstract We have recently obtained experimental data and used them to develop computational models to quantify occupant impact responses and injury risks for military vehicles during frontal crashes. The number of experimental tests and model runs are however, relatively small due to their high cost. While this is true across the auto industry, it is particularly critical for the Army and other government agencies operating under tight budget constraints. In this study we investigate through statistical simulations how the injury risk varies if a large number of experimental tests were conducted. We show that the injury risk distribution is skewed to the right implying that, although most physical tests result in a small injury risk, there are occasional physical tests for which the injury risk is extremely large. We compute the probabilities of such events and use them to identify optimum design conditions to minimize such probabilities.
2010-04-12
Technical Paper
2010-01-1023
Jingwen Hu, Jonathan Rupp, Tony Lamb, Eric Michalak, Chia-Yuan Chang, Lawrence Schneider
The effects of seatbelt use, muscle tension, lower-extremity posture, driver fore-aft seat position, seat height, and seat angle on the likelihood of knee, thigh, and hip (KTH) injuries during knee-to-knee-bolster impacts in frontal crashes were studied using a finite element (FE) human model. A midsize male whole-body FE model, with a previously validated knee-impact response, was further validated in this study against whole-body responses from two sets of cadaver sled tests. This human model was integrated with vehicle instrument panel, seat, and restraint-system models. An FMVSS 208 crash pulse of a passenger car was used to evaluate the effects of the aforementioned factors on the risk of KTH injuries. Simulation results indicated that seatbelts significantly reduced peak forces generated at the knee, in the thigh, and at the hip, and thereby reduced the risk of KTH injuries.
2004-06-15
Technical Paper
2004-01-2130
Lex van Rooij, Jack van Hoof, Matthew J. McCann, Stephen A. Ridella, Jonathan D. Rupp, Ana Barbir, Robin van der Made, Paul Slaats
Injuries to the knee-thigh-hip (KTH) complex in frontal motor vehicle crashes are of substantial concern because of their frequency and potential to result in long-term disability. Current frontal impact Anthropometric Test Dummies (ATDs) have been shown to respond differently than human cadavers under frontal knee impact loading and consequently current ATDs (and FE models thereof) may lack the biofidelity needed to predict the incidence of knee, thigh, and hip injuries in frontal crashes. These concerns demand an efficient and biofidelic tool to evaluate the occurrence of injuries as a result of KTH loading in frontal crashes. The MADYMO human finite element (FE) model was therefore adapted to simulate bone deformation, articulating joints and soft tissue behavior in the KTH complex.
1999-03-01
Technical Paper
1999-01-1064
Matthew P. Reed, Jonathan D. Rupp, Warren N. Hardy, Lawrence W. Schneider
Two new techniques for investigating the thermal skin-burn potential of airbags are presented. A reduced-volume airbag test procedure has been developed to obtain airbag pressures that are representative of a dynamic ridedown event during a static deployment. Temperature and heat flux measurements made with this procedure can be used to predict airbag thermal burn potential. Measurements from the reduced-volume procedure are complemented by data obtained using two gas-jet simulators, called heatguns. Gas is vented in controlled bursts from a large, heated, pressurized tank of gas onto a target surface. Heat flux measurements on the target surface have been used to develop quantitative models of the relationships between gas jet characteristics and burn potential.
1999-03-01
Technical Paper
1999-01-1065
Matthew P. Reed, Jonathan D. Rupp, Steven J. Reed, Lawrence W. Schneider
The UMTRI Airbag Skin Burn Model has been improved through laboratory testing and the implementation of a more flexible heat transfer model. A new impinging jet module based on laboratory measurements of heat flux due to high-velocity gas jets has been added, along with an implicit finite-difference skin conduction module. The new model can be used with airbag gas dynamics simulation outputs, or with heat flux data measured in the laboratory, to predict the potential for thermal skin burn due to exposure to airbag exhaust gas.
Viewing 1 to 7 of 7