Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

A New Floating-Liner Test Rig Design to Investigate Factors Influencing Piston-Liner Friction

2012-04-16
2012-01-1328
The largest contribution to engine rubbing friction is made by the piston and piston rings running in the cylinder liner. The magnitude and characteristics of the friction behaviour and the influence on these of factors such as surface roughness, piston design and lubricant properties are of keen interest. Investigating presents experimental challenges, including potential problems of uncontrolled build-to-build variability when component changes are made. These are addressed in the design of a new motored piston and floating liner rig. The design constrains transverse movement of a single liner using cantilevered mounts at the top and bottom. The mounts and two high stiffness strain gauged load cells constrain vertical movement. The outputs of the load cells are processed to extract the force contribution associated with friction. The liner, piston and crankshaft parts were taken from a EuroV-compliant, HPCR diesel engine with a swept capacity of 550cc per cylinder.
Technical Paper

Further Investigations on Time-Alignment

2004-03-08
2004-01-1441
The measurement of vehicle modal emissions is technically challenging due to the major issue of determining exhaust gas mass flow rate and ensuring that it is synchronous with the emission measurement of that corresponding ‘slug’ of exhaust gas. This is very evident when attempting to measure small passive NOx catalyst conversion efficiencies. This paper highlights alignment issues with regard to the variation of time delays associated with engine and vehicle events and the CO2 tracer method for determining exhaust gas flows.
Technical Paper

Influence of Time-Alignment on the Calculation of Mass Emissions on a Chassis Rolls Dynamometer

2003-03-03
2003-01-0395
Time-alignment sensitivity studies have been carried out to assess the accuracy of instantaneous mass NOx emissions on a chassis rolls dynamometer. The work is part of a larger project aimed at measuring passive NOx catalyst conversion efficiencies. Instantaneous NOx emissions are examined in relation to the NEDC vehicle speed trace at multi sampling points, and phase and time alignment issues are highlighted and discussed. It has been found that a small mismatch of the vehicle speed trace to the instantaneous mass of emissions of ± 2 seconds can lead to results indicating that the conversion efficiency is anywhere between 0-20%. Finally, examples are presented showing the difficulties of attempting to adjust the time alignment of raw emissions data.
X