Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Investigation on the Effects of Dimethyl Ether Blending to Bunker Oil for Marine Diesel Engine Use

2013-10-14
2013-01-2659
Fossil fuels are the dominant source of energy today with the problem of their supply depletion becoming a global issue. Since stable energy supplies are necessary in order to sustain the activities of mankind, conservation of petroleum fuel and finding an appropriate substitute are critical. Additionally, solutions to global environmental pollution problems are simultaneously needed, such as the Kyoto protocol for global warming. The aim of this study is to investigate whether the combustion state of bunker oil can be improved by the mixing of DME (dimethyl ether), which is considered as a possible alternative fuel. The kinematic viscosity of DME blended fuel, as well as the engine performance characteristics of single cylinder direct injection diesel engine, was measured experimentally. In the kinematic viscosity measurement, a pressure cell type viscosity measurement system was established in order to apply the volatile DME blended fuel.
Technical Paper

Combustion of the Rape-Seed Oil in a Diesel Engine

2002-03-04
2002-01-0867
Some volumes of gas oil and ethanol were mixed to the rape-seed oil to examine the engine performance characteristics. A 4-cycle indirect injection diesel engine was used as the test engine, and exhaust emissions were measured together with cylinder pressure history in variation of the engine loads. The single droplet combustion test was also carried out. Combustion processes in the heated constant volume vessel were observed by using of a high-speed video camera. From the experiments, it is obtained that rape-seed oils take longer combustion duration compared with gas oils. And addition of ethanol promotes the micro explosion of fuel droplets. These features affect to the properties of exhaust emissions from the engine.
Technical Paper

Analysis of Diesel Spray Structure by Using a Hybrid Model of TAB Breakup Model and Vortex Method

2001-03-05
2001-01-1240
This study proposes a hybrid model which consists of modified TAB(Taylor Analogy Breakup) model and DVM(Discrete Vortex Method). In this study, the simulation process is divided into three steps. The first step is to analyze the breakup of droplet of injected fuel by using modified TAB model. The second step based on the theory of Siebers' liquid length is analysis of spray evaporation. The liquid length analysis of injected fuel is used for connecting both modified TAB model and DVM. The final step is to reproduce the ambient gas flow and inner vortex flow injected fuel by using DVM. In order to examine the hybrid model, an experiment of a free evaporating fuel spray at early injection stage of in-cylinder like conditions had been executed. The numerical results calculated by using the present hybrid model are compared with the experimental ones.
Technical Paper

Correlating the Diesel Spray Behavior to Nozzle Design

1999-10-25
1999-01-3555
This paper studies the effect of nozzle geometry on the flow characteristics inside a diesel fuel injection nozzle and correlates to the subsequent atomization process under different operating conditions, using simple turbulent breakup model. Two kinds of nozzles, valve covered orifice (VCO) and mini-SAC nozzle, with various nozzle design parameters were studied. The internal flow inside the nozzle was simulated using 3-D computational fluid dynamics software with k-ε turbulence model. The flow field at the nozzle exit was characterized by two parameters: the fuel discharge coefficient Cd and the initial amplitude parameter amp0. The latter parameter represents the turbulence characteristics of the exit flow. The effects of nozzle geometry on the mean velocity and turbulent energy distribution of the exit flow were also studied. The characteristics of the exit flow were then incorporated into the spray model in KIVA-II to study the effect of nozzle design on diesel spray behavior.
X