Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Objective and Perceptual Sound Quality Analysis of Internal Combustion Engine and Electric Vehicles

2024-04-09
2024-01-2716
The sound quality of automotive interiors is one of the critical factors regarding customer satisfaction. As electric vehicles (EVs) rapidly rise in popularity, the known literature on sound qualities of internal combustion engine (ICE) automotive interiors has become less relevant. Because of this, comparing and contrasting 'the sound qualities of EV and ICE vehicles is essential to have the proper foundation for studying automotive noise quality in the future. In this paper, we aim to benchmark the major differences between an EV and an ICE automobile regarding interior sound quality. This study seeks to understand basic sound engineering characteristics and how they differ between the two types of vehicles. We also analyzed the public's preferences when it comes to the two types of cars.
Journal Article

Application of a New Perceptually-Accurate Tonality Assessment Method

2015-06-15
2015-01-2282
For many years in vehicle and other product noise assessments, tonality measurement procedures such as the Tone-to-Noise Ratio, Prominence Ratio and DIN 45681 Tonality have been available to quantify the audibility of prominent tones. Especially through the recent past as product sound pressure levels have become lower, disagreements between perceptions and measurements have increased across a wide range of product categories including automotive, Information Technology and residential products. One factor is that tonality perceptions are caused by spectrally-elevated noise bands of various widths and slopes as well as by pure tones, and usually escape measure in extant tools. Near-superpositions of discrete tones and elevated narrow noise bands are increasingly found in low-level technical sounds. Existing pure-tone methodologies tend to misrecognize an elevated noise band as general masking lowering the audibility of a tone in the measured vicinity, whereas perceptually they add.
Technical Paper

Sensation and Measurement of Low and Very Low Frequency Time-Varying Sounds in Accordance with the Very Short Impulse Response of Low-Frequency Human Hearing

2011-05-17
2011-01-1665
Human hearing, with its active transducers, attention process and remarkable signal-processing abilities, challenges the transportation-product sound quality engineer to measure accordingly and has clearly given rise to the practice and tools of sound quality engineering. Transient events and/or level changes of various durations and magnitudes and over various frequency bandwidths are measurable with due care in the majority of “real-world” acoustic time-signal histories, and frequently carry subjective importance. Inspired by recent work with wind-turbine sound situations, the focus of this paper is to suggest reconsideration of some low-frequency measurement methodologies in the transportation realm.
Technical Paper

Braking Systems Creep Groan Noise: Detection and Evaluation

2009-05-19
2009-01-2103
“Creep groan” is a braking systems noise that is observed when a vehicle is starting to move from a stopped condition with brake pressure applied. Motion takes place when brake pressure is reduced while a motive force, such as an idling engine through an automatic transmission, or gravity due to the vehicle being on a slope, is present. The vibration causing the sound is commonly thought to result from friction force variation in stick-slip mode. Detection and evaluation of “creep groan” noise has been a challenge for NVH test groups. First, this sound typically is not purely tonal like the more common brake squeal, although ultimately it may produce a tonal subjective impression. In this work the authors study different methods that may be applied to “creep groan” detection and evaluation.
Technical Paper

A Virtual Car: Prediction of Sound and Vibration in an Interactive Simulation Environment

2001-04-30
2001-01-1474
Feeling and hearing the results of engineering decisions immediately via a “virtual car” - simultaneous engineering - can significantly shorten vehicle development time. Sound quality and discrete vibration at the driver's position may be predicted and “driven” before the first prototype is built. Although sound cannot yet be predicted in an unknown chassis, the sound and vibration behavior resulting from a new engine, never previously installed in a given vehicle, may be predicted, heard binaurally and felt in an interactive “drivable” simulation based on transfer path analysis. Such a simulation, which includes the binaural sound field and discrete vibration of steering wheel and seat, can also include wind and tire noise to determine if certain engine contributions in sound and vibration may be masked.
X