Refine Your Search

Search Results

Author:
Viewing 1 to 8 of 8
Technical Paper

Dummy Positioning at Reclined Seating Position before Impact Testing

2024-04-09
2024-01-2490
Alongside advancements in automated vehicle technologies, occupants within vehicle compartments are enjoying increased freedom to relax and enjoy their journeys. For instance, reclined seating postures have become more prevalent and comfortable compared to upright seating when Highly Automated Vehicles (HAVs) are introduced. Unfortunately, most Anthropomorphic Testing Devices (ATD) do not support reclined postures. THOR-AV 50M is a specially designed dummy for reclined postures. As a crucial tool for developing safety restraint systems to protect reclined occupants, the first question is how to position it correctly on a reclined seat before impact testing. In this study, classical zero gravity seats were selected. H-point coordinators of selected seat at 25°, 40° and 60° seatback angle were measured and compared by using H-point machine (HPM) even though current HPM was not designed for reclined seat.
Journal Article

Biomechanical Responses of the THOR-AV ATD in Rear Facing Test Conditions

2022-03-29
2022-01-0836
The THOR-AV dummy is a modified THOR dummy being developed for occupant safety testing in upright and reclined seating postures. The dummy has a new neck with improved biofidelity in rear impact, a pelvis/abdomen/lumbar design to improve seating posture, and a pelvis anthropometry that mimics human submarining responses for reclined seat testing. The dummy was evaluated against postmortem human subject (PMHS) corridors in rearward facing impact conditions (56 km/h impact speed, 38g acceleration) in both 25° and 45° seatback configurations. Biofidelity Ranking System (BRS) scores were calculated in accordance with NHTSA’s latest calculation algorithm. The BRS scores for THOR-AV seat loading are 1.58 (“good” biofidelity) and 2.94 (“marginal” biofidelity) for the 25° and 45° configurations respectively. The BRS scores for THOR-AV occupant responses are 1.95 and 1.38 for the 25° and 45° configurations respectively, both corresponding to “good” biofidelity.
Technical Paper

THOR Neck Moment Calculation at Atlanto-Occipital Joint

2019-04-02
2019-01-1037
In biomechanics research of human neck injuries, the moment for the upper neck was calculated to the Atlanto-Occipital (AO) joint. In this paper, a mathematical method was presented to calculate the neck moment at AO for both Test Device for Human Occupant Restraint (THOR) 50th male and THOR 5th female ATDs in neck flexion, extension and lateral bending directions. Detailed formula was derived according to the mechanical design and how parts functions in the ATD. The constant parameters for both THOR 50th and 5th were provided for the calculation. One THOR-50M neck test data was presented in this paper to illustrate the calculation results.
Technical Paper

An Algorithm to Calculate Chest Deflection from 3D IR-TRACC

2016-04-05
2016-01-1522
A three dimensional IR-TRACC (Infrared Telescope Rod for Assessment of Chest Compression) was designed for the Test Device for Human Occupant Restraint (THOR) in recent years to measure chest deflections. Due to the design intricateness, the deflection calculation from the measurements is sophisticated. An algorithm was developed in this paper to calculate the three dimensional deflections of the chest. The algorithm calculates the compression and also converts the results to the local spine coordinate system so that it can correlate with the Post Mortem Human Subject (PMHS) measurements for injury calculation. The method was also verified by a finite element calculation for accuracy, comparing the calculation from the corresponding model output and the direct point to point measurements. In addition, the IR-TRACC calibration methods are discussed in this paper.
Technical Paper

WorldSID 5th Percentile Prototype Dummy Development

2007-04-16
2007-01-0701
The WorldSID 5th percentile dummy, representing an average female, was developed in less than three years after the WorldSID 50th percentile dummy production release. This 5th percentile dummy was developed in the Integrated Project Aprosys (Advanced Protection Systems) under the European Commission Framework Program 6. This paper discusses the rationale for the WorldSID 5th percentile dummy design and development, and biofidelity evaluation results of head drop test, neck pendulum test and pendulum impact tests of the shoulder, thorax, abdomen and pelvis according to ISO TR9790 (ISO 1997) and Irwin (2002). The dummy was designed to host four units of 32 channel in-dummy Data Acquisition System with total 128 channel capacity. The head is constructed with PVC skin and plastic skull to simulate human head structure. The neck consists of a rubber design with metal discs, which can be tuned with rubber buffers.
Technical Paper

Development of Advanced Finite Element Models of World SID 5th and 50th — The Next Generation Side Impact Dummies

2007-04-16
2007-01-0891
This paper describes the development of new advanced Finite Element (FE) models of the World SID series, namely World SID 50th and 5th, the new generation of side impact Anthropomorphic Test Devices (ATD). The model development follows the FTSS's rigorous quality assurance (QA) procedure and uses the manufacture's product data and test facilities extensively. The models are validated at material, component & assembly, full dummy certification and sled test application levels. A detailed modeling methodology is described. The models correlate well with both the component and whole dummy level test results.
Technical Paper

A New Calibration Specification for Linear Displacement Transducers

2006-04-03
2006-01-0719
Linear displacement transducers may be used to measure deflection and, based on time histories, calculate rates of deflection and viscous criterion (VC). The current study documents that these transducers are subject to damage affecting the linearity of their responses, that this damage is not uncommon, and that the deviations from linearity can greatly affect calculations of deflection rate and VC. A calibration procedure to identify transducers with significantly non-linear responses is proposed.
Technical Paper

SID-IIs Beta+-Prototype Dummy Biomechanical Responses

1998-11-02
983151
This paper presents the results of biomechanical testing of the SID-IIs beta+-prototype dummy by the Occupant Safety Research Partnership. The purpose of this testing was to evaluate the dummy against its previously established biomechanical response corridors for its critical body regions. The response corridors were scaled from the 50th percentile adult male corridors defined in International Standards Organization Technical Report 9790 to corridors for a 5th percentile adult female, using established International Standards Organization procedures. Tests were performed for the head, neck, shoulder, thorax, abdomen and pelvis regions of the dummy. Testing included drop tests, pendulum impacts and sled tests. The biofidelity of the SID-IIs beta+-prototype was calculated using a weighted biomechanical test response procedure developed by the International Standards Organization.
X