Refine Your Search

Topic

Search Results

Technical Paper

A Methodology for Threat Assessment in Cut-in Vehicle Scenarios

2021-04-06
2021-01-0873
Advanced Driver Assistance System (ADAS) has become a common standard feature assisting greater safety and fuel efficiency in the latest automobiles. Yet some ADAS systems fail to improve driving comfort for vehicle occupants who expect human-like driving. One of the more difficult situations in ADAS-assisted driving involves instances with cut-in vehicles. In vehicle control, determining the moment at which the system recognizes a cut-in vehicle as an active target is a challenging task. A well-designed comprehensive threat assessment developed for cut-in vehicle driving scenarios should eliminate abrupt and excessive deceleration of the vehicle and produce a smooth and safe driving experience. This paper proposes a novel methodology for threat assessment for driving instances involving a cut-in vehicle. The methodology takes into consideration kinematics, vehicle dynamics, vehicle stability, road condition, and driving comfort.
Technical Paper

Advancements in Tire Modeling Through Implementation of Load and Speed Dependent Coefficients

2005-11-01
2005-01-3543
An existing tire model was investigated for additional normal load-dependent characteristics to improve the large truck simulations developed by the National Highway Traffic Safety Administration (NHTSA) for the National Advanced Driving Simulator (NADS). Of the existing tire model coefficients, plysteer, lateral friction decay, aligning torque stiffness and normalized longitudinal stiffness were investigated. The findings of the investigation led to improvements in the tire model. The improved model was then applied to TruckSim to compare with the TruckSim table lookup tire model and test data. Additionally, speed-dependent properties for the NADS tire model were investigated (using data from a light truck tire).
Technical Paper

Analysis of Human Driver Behavior in Highway Cut-in Scenarios

2017-03-28
2017-01-1402
The rapid development of driver assistance systems, such as lane-departure warning (LDW) and lane-keeping support (LKS), along with widely publicized reports of automated vehicle testing, have created the expectation for an increasing amount of vehicle automation in the near future. As these systems are being phased in, the coexistence of automated vehicles and human-driven vehicles on roadways will be inevitable and necessary. In order to develop automated vehicles that integrate well with those that are operated in traditional ways, an appropriate understanding of human driver behavior in normal traffic situations would be beneficial. Unlike many research studies that have focused on collision-avoidance maneuvering, this paper analyzes the behavior of human drivers in response to cut-in vehicles moving at similar speeds. Both automated and human-driven vehicles are likely to encounter this scenario in daily highway driving.
Technical Paper

Analytical Tire Forces and Moments Model With Validated Data

2007-04-16
2007-01-0816
Tire models used in vehicle dynamics simulation and tire-related research rely basically on curve fitted experimental data and empirical adjustments of theoretical models. The complexity of tire mechanics has limited the development of a complete and reasonable analytical force theory. This paper validates an analytical tire model recently developed by the author. This theoretical model uses physical parameters: lateral and longitudinal stiffnesses, aligning moment pneumatic trail, overturning moment arm, lateral force relaxation length, and friction properties. These are standard mechanical properties that characterize the force generating capacity of tires. The validation procedure compares the theoretical ground forces and moments with experimental data. Tire data measured on a flat track tire testing machine are used in this validation. It covers the full range of longitudinal, lateral, and combined slips.
Journal Article

Braking Behavior of Truck Drivers in Crash Imminent Scenarios

2014-09-30
2014-01-2380
Dynamic Brake Support (DBS) is a safety system that has been applied to various passenger cars and has been shown to be effective at assisting drivers in avoiding or mitigating rear-end collisions. The objective of a DBS system is to ensure that the brake system is applied quickly and at sufficient pressure when a driver responds to a collision imminent situation. DBS is capable of improving braking response due to a passenger car driver's tendency to utilize multi-stage braking. Interest is developing in using DBS on commercial vehicles. In order to evaluate the possible improvement in safety that could be realized through the use of DBS, driver braking behavior must first be analyzed to confirm that improvement is possible and necessary. To determine if this is the case, a study of the response of truck drivers' braking behavior in collision imminent situations is conducted. This paper presents the method of evaluation and results.
Technical Paper

Closed Loop Steering System Model for the National Advanced Driving Simulator

2004-03-08
2004-01-1072
This paper presents the details of the model for the physical steering system used on the National Advanced Driving Simulator. The system is basically a hardware-in-the-loop (steering feedback motor and controls) steering system coupled with the core vehicle dynamics of the simulator. The system's torque control uses cascaded position and velocity feedback and is controlled to provide steering feedback with variable stiffness and dynamic properties. The reference model, which calculates the desired value of the torque, is made of power steering torque, damping function torque, torque from tires, locking limit torque, and driver input torque. The model also provides a unique steering dead-band function that is important for on-center feel. A Simulink model of the hardware/software is presented and analysis of the simulator steering system is provided.
Journal Article

Development of a Roll Stability Control Model for a Tractor Trailer Vehicle

2009-04-20
2009-01-0451
Heavy trucks are involved in many accidents every year and Electronic Stability Control (ESC) is viewed as a means to help mitigate this problem. ESC systems are designed to reduce the incidence of single vehicle loss of control, which might lead to rollover or jackknife. As the working details and control strategies of commercially available ESC systems are proprietary, a generic model of an ESC system that mimics the basic logical functionality of commercial systems was developed. This paper deals with the study of the working of a commercial ESC system equipped on an actual tractor trailer vehicle. The particular ESC system found on the test vehicle contained both roll stability control (RSC) and yaw stability control (YSC) features. This work focused on the development of a reliable RSC software model, and the integration of it into a full vehicle simulation (TruckSim) of a heavy truck.
Technical Paper

Evaluation of Heavy Tractor-Trailer Model used in the National Advanced Driving Simulator

2003-03-03
2003-01-1324
This paper evaluates the heavy tractor-trailer handling dynamics model used in the National Advanced Driving Simulator. The comparison between simulation and experiments were done using lane change, slowly increasing steer, pulse steer, step steer, and straight-line braking maneuvers. The paper discusses tractor-trailer instrumentation and the results of field experiments.
Technical Paper

Experimental Steering Feel Performance Measures

2004-03-08
2004-01-1074
This paper discusses techniques for estimating steering feel performance measures for on-center and off-center driving. Weave tests at different speeds are used to get on-center performances for a 1994 Ford Taurus, a 1998 Chevrolet Malibu, and a 1997 Jeep Cherokee. New concepts analyzing weave tests are added, specifically, the difference of the upper and lower curves of the hysteresis and their relevance to driver load feel. For the 1997 Jeep Cherokee, additional tests were done to determine steering on-center transition properties, steering flick tests, and the transfer function of handwheel torque feel to handwheel steering input. This transfer function provides steering system stiffness in the frequency domain. The frequency domain analysis is found to be a unique approach for characterizing handwheel feel, in that it provides a steering feel up to maximum steering rate possible by the drivers.
Journal Article

Hardware-in-the-Loop Pneumatic Braking System for Heavy Truck Testing of Advanced Electronic Safety Interventions

2016-04-05
2016-01-1648
The rapid innovation underway with vehicle brake safety systems leads to extensive evaluation and testing by system developers and regulatory agencies. The ability to evaluate complex heavy truck braking systems is potentially more rapid and economical through hardware-in-the-loop (HiL) simulation which employs the actual electronics and vehicle hardware. Though the initial HiL system development is time consuming and expensive, tests conducted on the completed system do not require track time, fuel, vehicle maintenance, or technician labor for driving or truck configuration changes. Truck and trailer configuration and loading as well as test scenarios can be rapidly adjusted within the vehicle dynamics simulation software to evaluate the performance of automated safety interventions (such as ESC) over a wide range of conditions.
Technical Paper

Heavy Tractor-Trailer Vehicle Dynamics Modeling for the National Advanced Driving Simulator

2003-03-03
2003-01-0965
This paper presents the development of a real-time vehicle dynamics model of the heavy tractor-trailer combination used in the National Advanced Driving Simulator. The model includes multi-body dynamics of the tractor and trailer chassis, suspension, and steering mechanisms. The rigid body model is formulated using recursive multi-body dynamics code. This model is augmented with subsystem models that include tires, leaf springs, brakes, steering system, and aerodynamic drag. This paper also presents parameter measurement and estimations used to set up the model. Also included are models for brake fade, steering torque resistance, and defective tires.
Journal Article

Heavy Vehicle Hardware-in-the-Loop Automatic Emergency Braking Simulation with Experimental Validation

2016-09-27
2016-01-8010
Field testing of Automatic Emergency Braking (AEB) systems using real actual heavy trucks and buses is unavoidably limited by the dangers and expenses inherent in crash-imminent scenarios. For this paper, a heavy vehicle is defined as having a gross vehicle weight rating (GVWR) that exceeds 4536 kg (10,000 lbs.). High fidelity Hardware-in-the-Loop (HiL) simulation systems have the potential to enable safe and accurate laboratory testing and evaluation of heavy vehicle AEB systems. This paper describes the setup and experimental validation of such a HiL simulation system. An instrumented Volvo tractor-trailer equipped with a Bendix Wingman Advanced System, including the FLR20 forward looking radar and AEB system, was put through a battery of different types of track tests to benchmark the AEB performance.
Technical Paper

Heavy Vehicles Kinematics of Automatic Emergency Braking Test Track Scenarios

2020-04-14
2020-01-0995
This paper presents the test track scenario design and analysis used to estimate the performances of heavy vehicles equipped with forward collision warning and automatic emergency braking systems in rear-end crash scenarios. The first part of this design and analysis study was to develop parameters for brake inputs in test track scenarios simulating a driver that has insufficiently applied the brakes to avoid a rear-end collision. In the second part of this study, the deceleration limits imposed by heavy vehicles mechanics and brake systems are used to estimate automatic emergency braking performance benefits with respect to minimum stopping distance requirements set by Federal Motor Vehicle Safety Standards. The results of this study were used to complete the test track procedures and show that all heavy vehicles meeting regulatory stopping distance requirements have the braking capacity to demonstrate rear-end crash avoidance improvements in the developed tests.
Technical Paper

Implementation of an Electric All-Wheel Drive (eAWD) System

2008-01-14
2008-01-0599
This paper presents the implementation and performance of an electric all-wheel drive system on a series-parallel, through-the-road hybrid electric vehicle. Conventional methods of all-wheel drive do not provide a suitable solution for this type of vehicle as the powertrain lacks a mechanical link between the front and rear axles. Moreover, this unique architecture allows the vehicle to be propelled solely by the front, or the rear, wheels during typical operation. Thus, the algorithm presented here manages wheel slip by either the front, or rear wheels when engaging to provide all-wheel drive capability. necessary testing validates the robustness of this Extensive system.
Journal Article

Integration of a Torsional Stiffness Model into an Existing Heavy Truck Vehicle Dynamics Model

2010-04-12
2010-01-0099
Torsional stiffness properties were developed for both a 53-foot box trailer and a 28-foot flatbed control trailer based on experimental measurements. In order to study the effect of torsional stiffness on the dynamics of a heavy truck vehicle dynamics computer model, static maneuvers were conducted comparing different torsional stiffness values to the original rigid vehicle model. Stiffness properties were first developed for a truck tractor model. It was found that the incorporation of a torsional stiffness model had only a minor effect on the overall tractor response for steady-state maneuvers up to 0.4 g lateral acceleration. The effect of torsional stiffness was also studied for the trailer portion of the existing model.
Technical Paper

Measurement and Modeling of Tire Forces on a Low Coefficient Surface

2006-04-03
2006-01-0559
There exists a fairly extensive set of tire force measurements performed on dry pavement. But in order to develop a low-coefficient of friction tire model, a set of tire force measurements made on wet pavement is required. Using formulations and parameters obtained on dry roads, and then reducing friction level to that of a wet road is not sufficient to model tire forces in a high fidelity simulation. This paper describes the process of more accurately modeling low coefficient tire forces on the National Advanced Driving Simulator (NADS). It is believed that the tire model improvements will be useful in many types of NADS simulations, including ESC and other advanced vehicle technology studies. In order to produce results that would come from a road surface that would be sufficiently slippery, a set of tires were shaved to 4/32 inches and sent to a tire-testing lab for measurement.
Technical Paper

Model Validation of the 1997 Jeep Cherokee for the National Advanced Driving Simulator

2000-03-06
2000-01-0700
This paper presents an evaluation of a complete vehicle dynamics model for a 1997 Jeep Cherokee to be used for the National Advanced Driving Simulator. Vehicle handling and powertrain dynamics are evaluated and simulation results are compared with experimental field-testing. NADSdyna, the National Advanced Driving Simulator vehicle dynamics software, is used. The Jeep evaluation covers vehicle directional dynamics that include steady state, transient and frequency response, and vehicle longitudinal dynamics that include acceleration and braking.
Technical Paper

Model Validation of the 1998 Chevrolet Malibu for the National Advanced Driving Simulator

2001-03-05
2001-01-0141
This paper presents an evaluation of a complete vehicle dynamics model for a 1998 Chevrolet Malibu to be used for the National Advanced Driving Simulator. Vehicle handling, braking and powertrain dynamics are evaluated and simulation results are compared with experimental field-testing. NADSdyna, the National Advanced Driving Simulator vehicle dynamics software, is used. The Malibu evaluation covers vehicle directional dynamics that include steady state, transient frequency response, and vehicle longitudinal dynamics composed of acceleration and braking. Also, analyses of the effects of modified tire parameters on vehicle dynamics response is performed. The effects of wind gusts generated by a tractor-trailer and a bus on the Malibu vehicle directional dynamics are analyzed. For the steering system feel, we compare the handwheel torque feedback with the measured data during both high-speed dynamics and in the very low speed tire stick-slip regime.
Technical Paper

Model Validation of the 2006 BMW 330i for the National Advanced Driving Simulator

2007-04-16
2007-01-0817
This paper presents an evaluation of a complete vehicle dynamics model for a 2006 BMW 330i to be used for the National Advanced Driving Simulator. Vehicle handling and braking are evaluated and simulation results are compared with experimental field-testing. NADSdyna, the National Advanced Driving Simulator vehicle dynamics software, is used. The BMW evaluation covers vehicle directional dynamics that include steady-state, transient, and frequency domain responses. These evaluations are performed with the DSC (Dynamic Stability and Control) turned off to ensure the principle mechanical properties of the vehicle are properly modeled before enabling the electronic stability system. The evaluation also includes simulation runs with DSC turned on for the J-turn and severe lane change maneuvers.
Technical Paper

Modeling and Implementation of Steering System Feedback for the National Advanced Driving Simulator

2002-05-07
2002-01-1573
This paper presents a real-time steering system torque feedback model used in the National Advanced Driving Simulator (NADS). The vehicle model is based on real-time recursive multi-body dynamics augmented with vehicle subsystems models including tires, power train, brakes, aerodynamics and steering. The steering system feel is of paramount importance for the fidelity of the simulator. The driver has to feel the appropriate torque as he/she steers the vehicle. This paper presents a detailed mathematical model of the steering physics from low-speed stick-slip to high-speed states. On-center steering weave handling and aggressive lane change inputs are used to validate the basic mathematical predictions. This validation is objective and open loop, and was done using field experiments.
X