Refine Your Search

Search Results

Author:
Viewing 1 to 7 of 7
Technical Paper

Cast Magnesium Subframe Development-Corrosion Mitigation Strategy and Testing

2021-04-06
2021-01-0279
A cast magnesium AE44 subframe was designed and manufactured for a C Class sedan to reduce weight and improve vehicle fuel economy. Corrosion mitigation strategies were developed to reduce the likelihood of galvanic corrosion. Both a proving ground vehicle corrosion test and a laboratory component corrosion test were conducted. The vehicle test result demonstrated that the corrosion mitigation strategies were effective. They also provided lessons learned on clearance between magnesium and steel components and options to improve the subframe’s corrosion resistance. The magnesium subframe achieved 5 kg (32%) weight reduction from the equivalent steel subframe and met all the required structural performance targets.
Technical Paper

Cast Magnesium Subframe Development - Bolt Load Retention

2021-04-06
2021-01-0274
A cast magnesium subframe was designed and manufactured for a C Class sedan to reduce weight and improve vehicle fuel economy. The magnesium subframe achieved 5 kg (32%) weight reduction from the equivalent steel subframe and met all the required structural performance targets. All the joints of the magnesium subframe were tested for bolt load retention. The tests were conducted with a temperature profile of 100°C to -30°C designed to investigate the creep behavior of the selected magnesium alloy AE44 under high stress.
Technical Paper

MMLV: Chassis Design and Component Testing

2015-04-14
2015-01-1237
The Multi Material Lightweight Vehicle (MMLV) developed by Magna International and Ford Motor Company is a result of a US Department of Energy project DE-EE0005574. The project demonstrates the lightweighting potential of a five passenger sedan, while maintaining vehicle performance and occupant safety. Prototype vehicles were manufactured and limited full vehicle testing was conducted. The Mach-I vehicle design, comprised of commercially available materials and production processes, achieved a 364kg (23.5%) full vehicle mass reduction, enabling the application of a 1.0-liter three-cylinder engine resulting in a significant environmental benefits and fuel consumption reduction. As part of this project, several automotive chassis components were selected for development and evaluation on the MMLV C/D segment passenger sedan.
Technical Paper

2005 Ford GT Magnesium Instrument Panel Cross Car Beam

2005-04-11
2005-01-0341
Ford GT 2005 vehicle was designed for performance, timing, cost, and styling to preserve Ford GT40 vintage look. In this vehicle program, many advanced manufacturing processes and light materials were deployed including aluminum and magnesium. This paper briefly explains one unique design concept for a Ford GT instrument panel comprised of a structural magnesium cross-car beam and other components, i.e. radio box and console top, which is believed to be the industry's first structural I/P from vehicle crash load and path perspectives. The magnesium I/P design criteria include magnesium casting properties, cost, corrosion protection, crashworthiness assessments, noise vibration harshness performance, and durability. Magnesium die casting requirements include high pressure die cast process with low casting porosity and sound quality, casting dimensional stability, corrosion protection and coating strategy, joining and assembly constraints.
Technical Paper

Aluminum Subframe Design for Crash Energy Management

2004-03-08
2004-01-1775
The engine subframe (cradle) is an important contributor to crash energy management in frontal impact for automotive vehicles. Subframe design can enhance vehicle crash performance through energy management. In addition to energy management targets, the subframe must meet stiffness, durability and other vehicle engineering requirements. Various subframe concepts are reviewed. Their design intents and vehicle performance are discussed. A development process of an aluminum subframe is then presented which details the subframe design as an energy absorbing component for frontal impacts. The architecture of the subframe is developed based on overall functionality requirements and package constraints. The geometry of the subframe is first designed to accommodate engine mounts and suspension support locations. The subframe member's shape, orientation, and location are then refined to accommodate the subframe-to-body connection requirements.
Technical Paper

2005 Ford GT Magnesium I/P Structure

2004-03-08
2004-01-1261
This paper describes a new concept for a Ford GT instrument panel (IP) based on structural magnesium components, which resulted in what may be the industry's first structural IP (primary load path). Two US-patent applications are ongoing. Design criteria included cost, corrosion protection, crashworthiness assessments, noise vibration harshness (NVH) performance, and durability. Die casting requirements included feasibility for production, coating strategy and assembly constraints. The magnesium die-cast crosscar beam, radio box and console top help meet the vehicle weight target. The casting components use an AM60 alloy that has the necessary elongation properties required for crashworthiness. The resulting IP design has many unique features and the flexibility present in die-casting that would not be possible using conventional steel stampings and assembly techniques.
Technical Paper

Aluminum Vehicle Side Impact Design, Test and CAE

2002-03-04
2002-01-0249
Ford designed and built a midsize family sedan for the PNGV (Partnership for a New Generation of Vehicle). The side impact performance of the aluminum vehicle and the current CAE capability was studied. The vehicle was tested according to the specifications of FMVSS 214. The results show the vehicle meet the federal safety requirements. The impact performances of the front and rear dummies were comparable to those of the steel counterpart. CAE analysis was conducted to develop the body component design and to predict the structural and dummy responses. The results show that without modeling of the joint (rivet and weld) separation, the accuracy of the CAE crash analysis for this aluminum vehicle was inadequate. When empirical separation criteria were incorporated to model the joint, analysis results correlated with the test. Further development of robust modeling methods for joint separation is needed to improve the prediction of aluminum structure crash responses.
X