Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Small Overlap Impact Countermeasures for Automobiles

2015-04-14
2015-01-1491
Automotive OEMs, insurance agencies and regulatory bodies are continuously looking at various accident statistics and proper ways of evaluating unaccounted (as per current regulations and safety ratings) accident scenarios to improve the safety standards of cars. Small overlap and oblique impacts during which a corner of a car hits a tree or the corner of another vehicle are two such situations. Most of the vehicles that are on road scored low when tested for these impact scenarios. This paper focuses on development of energy-absorbing members, using engineering thermoplastics materials, which can be mounted on the BIW of a vehicle, as countermeasures to small overlap impact. Various design and material configurations options, including metal plastic and composite plastic structural members mounted on the BIW are evaluated through CAE studies, against small overlap/oblique impact scenarios.
Journal Article

A Methodology to Quantify Surface Mar

2012-04-16
2012-01-0542
Understanding scratch and mar damage performance of materials is important in the automotive industry. Hence there is need to develop a suitable method to quantify them and relate back to product performance. This paper elucidates a method to quantitatively evaluate mar defects. The method involves marring the surface of a sample with a crockmeter and the damaged surface characterized using a two-camera optical imaging system. These results were then correlated with visual survey results and a transfer function was generated using Design expert DX6net. In the validation stage, a set of newly marred samples were investigated to generate both visual rank and mar index using the transfer functions. Excellent agreement between mar index and visual survey rank reconfirmed the method's effectiveness. Mar performance of different materials (black and high gloss) can be compared using this technique on a 0-100 scale. This method can also be used to characterize polycarbonate glazing surfaces.
Technical Paper

Part 581, IIHS Damageability and Lower Leg Impact Compliant Bumper - Challenges and Solutions

2012-04-16
2012-01-0274
The worldwide involvement in global technical regulation (GTR) discussion shows the increasing importance of pedestrian safety as a global concern. In the US, bumper systems are designed for the Part 581 bumper standard and IIHS (Insurance Institute of Highway Safety) bumper structural test protocols. There has also been discussion in the North American automotive industry about the merits of incorporating some measure of pedestrian protection into their systems as well. Compliance with the potential pedestrian leg requirements creates a design conflict with current bumper damageability standards and possibly CAFÉ laws. The difficulties of designing a bumper system that is rigid enough to protect the vehicle in low speed crashes and, at the same time, compliant enough to protect a pedestrian raise questions as to whether these ideas are compatible.
Technical Paper

Virtual Design Optimization of Thermoplastic Steering Wheel

2011-04-12
2011-01-0023
Automotive steering wheels, which play an important role as a human machine interface, are evolving over time with numerous integrations and innovations. Thermoplastic steering wheel, one of the innovations in recent times, offers significant reduction in mass along with part integration and styling flexibility and is an excellent replacement to traditional metal armature steering wheels. Typical steering wheels need to meet many performance requirements before they enter production. With the advancement of computational mechanics and increase in computational capabilities, it has become much easier to evaluate and optimize steering wheel performance in different ways. Instead of manufacturing and running prototype tests, steering wheel designs can be modeled and optimized virtually in various scenarios using standard finite element analysis technique, thus facilitating faster development cycle.
Technical Paper

Thermoplastic Roof Crush Countermeasure Design for Improved Roof Crush Resistant to Meet FMVSS-216

2011-04-12
2011-01-1119
An automobile is designed to meet numerous impact events, including frontal impact, side impact, rear impact, and roll over. Roof crush resistance is a test defined by Federal Motor Vehicle Safety Standard (FMVSS) 216. The intent of this test is to evaluate the strength of the roof and supporting body structure during a vehicle rollover. Steel countermeasures are typically used as structural-reinforcing elements to the body structure to improve the crush strength of a vehicle roof. This paper presents a thermoplastic countermeasure (CM) design as a light-weight solution to replace traditional steel countermeasures. Two concepts are discussed in the paper: an all-plastic countermeasure and a plastic/metal hybrid countermeasure consisting of stamped steel with a thermoplastic reinforcing rib structure. Finite Element (FE) methods using LS-DYNA are used to evaluate the performance of these countermeasure concepts.
Technical Paper

Thermoplastic Rear Bumper Beams for Automobile Low-Speed Rear Impact

2011-04-12
2011-01-0544
High repair cost and the subsequent increase in insurance cost in a highly competitive automobile market have forced every automobile original equipment manufacturer (OEM) to comply with the FMVSS and ECE-42 regulatory requirements of low-speed vehicle damageability. Although, the terminologies used are different, similar regulatory requirements also exist in Asia-pacific region. At the rear side, reducing the damage to expensive vehicle components in a low-speed pendulum impact or a low-speed barrier impact can attain a good rating for low-speed vehicle damageability. This paper focuses on a detailed study of various lightweight plastic rear beam designs and their effectiveness in reducing the damage to the vehicle during low-speed vehicle-to-vehicle collision or vehicle to barrier collision.
Technical Paper

Performance Evaluation of PU Over-molded Thermoplastic Steering Wheel

2010-04-12
2010-01-0916
Automotive steering wheel (SW) is generally manufactured with metal armature and polyurethane / polypropylene (PU / PP) overmolding. The metal armature is used to provide structural stiffness and strength while PU / PP foam gives shape, touch and feel. Developed market use cast Magnesium or Aluminum as armature material, however emerging markets use steel for armature construction. With additional requirements (airbag integration, functional integration, aesthetics, compact and light weigh) being added to steering wheel, the steering wheel design is becoming more and more complex in nature. Thermoplastic SW offers competitive stiffness, impact, ductility and chemical resistance characteristics needed for the global automotive markets. A thermoplastic SW had been developed from a unique recyclable polycarbonate.
Technical Paper

Development of an Integrated Structural HVAC Instrument Panel Cockpit System

2002-03-04
2002-01-0309
The automotive industry is applying the concept of modularity to numerous automotive applications. Door modules, front-end modules, seating systems and instrument panel (IP) cockpits are examples of this trend. These systems offer advantages of part reduction and elimination, assembly line optimization, inventory reduction, and sub-system level design and validation. An IP cockpit is one of the most complex vehicle systems, not only because of the large number of components, but because of the numerous build variations available to the OEM. The OEM realizes maximum benefit when the IP cockpit is assembled as a module. The Integrated Structural HVAC System (ISHS) described here was designed and developed to enable the IP cockpit to be a modular system while realizing the benefits of mass reduction, cost reduction and packaging flexibility. This paper describes the components, functionality and performance that make up the ISHS system.
X